Rough Marcinkiewicz integrals with \(L(\log^+L)^2\) kernels on product spaces (Q2767433)

From MaRDI portal





scientific article; zbMATH DE number 1697443
Language Label Description Also known as
English
Rough Marcinkiewicz integrals with \(L(\log^+L)^2\) kernels on product spaces
scientific article; zbMATH DE number 1697443

    Statements

    0 references
    0 references
    0 references
    29 January 2002
    0 references
    Marcinkiewicz integral
    0 references
    rough kernel
    0 references
    product space
    0 references
    Rough Marcinkiewicz integrals with \(L(\log^+L)^2\) kernels on product spaces (English)
    0 references
    In this announcement, the authors claim that rough Marcinkiewicz integrals with \(L^2(\log ^+L)^2\) kernel on product spaces are bounded in \(L^p({\mathbb R}^n\times{\mathbb R}^n)\) for \(p\in (1,\infty)\), which are proved to be bounded in \(L^2({\mathbb R}^n\times{\mathbb R}^n)\) by \textit{Y. Ding} [Hokkaido Math. J. 27, No. 1, 105-115 (1998; Zbl 0896.42010)].
    0 references
    0 references

    Identifiers