Rough Marcinkiewicz integrals with \(L(\log^+L)^2\) kernels on product spaces (Q2767433)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Rough Marcinkiewicz integrals with \(L(\log^+L)^2\) kernels on product spaces |
scientific article; zbMATH DE number 1697443
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Rough Marcinkiewicz integrals with \(L(\log^+L)^2\) kernels on product spaces |
scientific article; zbMATH DE number 1697443 |
Statements
29 January 2002
0 references
Marcinkiewicz integral
0 references
rough kernel
0 references
product space
0 references
Rough Marcinkiewicz integrals with \(L(\log^+L)^2\) kernels on product spaces (English)
0 references
In this announcement, the authors claim that rough Marcinkiewicz integrals with \(L^2(\log ^+L)^2\) kernel on product spaces are bounded in \(L^p({\mathbb R}^n\times{\mathbb R}^n)\) for \(p\in (1,\infty)\), which are proved to be bounded in \(L^2({\mathbb R}^n\times{\mathbb R}^n)\) by \textit{Y. Ding} [Hokkaido Math. J. 27, No. 1, 105-115 (1998; Zbl 0896.42010)].
0 references