A note on the values of \(p\)-adic \(q\)-\(L\)-functions. (Q2767905)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on the values of \(p\)-adic \(q\)-\(L\)-functions. |
scientific article; zbMATH DE number 1698741
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on the values of \(p\)-adic \(q\)-\(L\)-functions. |
scientific article; zbMATH DE number 1698741 |
Statements
10 October 2002
0 references
\(q\)-zeta function
0 references
\(q\)-\(L\)-function
0 references
\(p\)-adic interpolation
0 references
Mazur measure
0 references
A note on the values of \(p\)-adic \(q\)-\(L\)-functions. (English)
0 references
Let \(h\) be a natural number. The \(h\)-extension of the \(q\)-zeta function is defined as NEWLINE\[NEWLINE \zeta_q^{(h)}(s)=\frac{1-s+h}{1-s}(q-1)\sum\limits_{n=1}^\infty \frac{q^{nh}}{[n]^{s-1}}+\sum\limits_{n=1}^\infty \frac{q^{nh}}{[n]^s}. NEWLINE\]NEWLINE This can be generalized to \(q\)-\(L\)-functions. The author constructs a \(p\)-adic interpolation of the latter by introducing and investigating an appropriate analog of the Mazur measure.NEWLINENEWLINEFor the entire collection see [Zbl 0972.00006].
0 references