A note on the values of \(p\)-adic \(q\)-\(L\)-functions. (Q2767905)

From MaRDI portal





scientific article; zbMATH DE number 1698741
Language Label Description Also known as
English
A note on the values of \(p\)-adic \(q\)-\(L\)-functions.
scientific article; zbMATH DE number 1698741

    Statements

    0 references
    10 October 2002
    0 references
    \(q\)-zeta function
    0 references
    \(q\)-\(L\)-function
    0 references
    \(p\)-adic interpolation
    0 references
    Mazur measure
    0 references
    A note on the values of \(p\)-adic \(q\)-\(L\)-functions. (English)
    0 references
    Let \(h\) be a natural number. The \(h\)-extension of the \(q\)-zeta function is defined as NEWLINE\[NEWLINE \zeta_q^{(h)}(s)=\frac{1-s+h}{1-s}(q-1)\sum\limits_{n=1}^\infty \frac{q^{nh}}{[n]^{s-1}}+\sum\limits_{n=1}^\infty \frac{q^{nh}}{[n]^s}. NEWLINE\]NEWLINE This can be generalized to \(q\)-\(L\)-functions. The author constructs a \(p\)-adic interpolation of the latter by introducing and investigating an appropriate analog of the Mazur measure.NEWLINENEWLINEFor the entire collection see [Zbl 0972.00006].
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references