Local property of maximal plurifinely plurisubharmonic functions (Q276801)

From MaRDI portal





scientific article; zbMATH DE number 6577302
Language Label Description Also known as
English
Local property of maximal plurifinely plurisubharmonic functions
scientific article; zbMATH DE number 6577302

    Statements

    Local property of maximal plurifinely plurisubharmonic functions (English)
    0 references
    0 references
    0 references
    4 May 2016
    0 references
    Let \(\Omega\) be an open set of \({\mathbb C}^n\) and denote by \({\mathcal F}\) the plurifine topology on \(\Omega\), i.e., the smallest topology that makes all plurisubharmonic functions on \(\Omega\) continuous. Building on the paper of \textit{M. El Kadiri} and \textit{I. M. Smit} [Potential Anal. 41, No. 4, 1329--1345 (2014; Zbl 1310.32034)], the authors prove that a continuous \({\mathcal F}\)-plurisubharmonic function on an \({\mathcal F}\)-open set \(\Omega\) in \({\mathbb C}^n\) is \({\mathcal F}\)-maximal in \(\Omega\) if and only if it is \({\mathcal F}\)-locally \({\mathcal F}\)-maximal in \(\Omega\).
    0 references
    plurifine pluripotential theory
    0 references
    \(\mathcal{F}\)-plurisubharmonic functions
    0 references
    \(\mathcal{F}\)-maximal \(\mathcal{F}\)-plurisubharmonic functions
    0 references

    Identifiers