Local property of maximal plurifinely plurisubharmonic functions (Q276801)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Local property of maximal plurifinely plurisubharmonic functions |
scientific article; zbMATH DE number 6577302
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Local property of maximal plurifinely plurisubharmonic functions |
scientific article; zbMATH DE number 6577302 |
Statements
Local property of maximal plurifinely plurisubharmonic functions (English)
0 references
4 May 2016
0 references
Let \(\Omega\) be an open set of \({\mathbb C}^n\) and denote by \({\mathcal F}\) the plurifine topology on \(\Omega\), i.e., the smallest topology that makes all plurisubharmonic functions on \(\Omega\) continuous. Building on the paper of \textit{M. El Kadiri} and \textit{I. M. Smit} [Potential Anal. 41, No. 4, 1329--1345 (2014; Zbl 1310.32034)], the authors prove that a continuous \({\mathcal F}\)-plurisubharmonic function on an \({\mathcal F}\)-open set \(\Omega\) in \({\mathbb C}^n\) is \({\mathcal F}\)-maximal in \(\Omega\) if and only if it is \({\mathcal F}\)-locally \({\mathcal F}\)-maximal in \(\Omega\).
0 references
plurifine pluripotential theory
0 references
\(\mathcal{F}\)-plurisubharmonic functions
0 references
\(\mathcal{F}\)-maximal \(\mathcal{F}\)-plurisubharmonic functions
0 references