Slow increase of Stieltjes integrals (Q2768774)

From MaRDI portal





scientific article; zbMATH DE number 1700125
Language Label Description Also known as
English
Slow increase of Stieltjes integrals
scientific article; zbMATH DE number 1700125

    Statements

    3 February 2002
    0 references
    slowly increasing functions
    0 references
    Stieltjes integrals
    0 references
    sufficient conditions
    0 references
    0 references
    Slow increase of Stieltjes integrals (English)
    0 references
    This paper deals with sufficient conditions for slow increase of Stieltjes integrals. In particular, the author proves the following result. Let \(l\) be a positive continuous slowly increasing function on \([a,+\infty)\), let \(l_1\) and \(l_2\) be positive continuous functions on \([a,+\infty)\) such that \(l_1(x)\leq l_2(x)\) for all \(x\geq a\) and let NEWLINE\[NEWLINE{l_2(l^{-1}(2l(2x)))\over l_1(x)}\ln{l(2x)\over l(x)}\to 0,\quad x\to+\infty.NEWLINE\]NEWLINE Let \(L(x)=\int_{a}^{x}\psi(t) dl(t)\), where \(\psi\) is a positive nondecreasing function on \([a,+\infty)\). If \(l_1(x)\leq L(x)\leq l_2(x),\;x\geq a\), then the function \(L\) is slowly increasing on \([a,+\infty)\).
    0 references

    Identifiers