Slow increase of Stieltjes integrals (Q2768774)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Slow increase of Stieltjes integrals |
scientific article; zbMATH DE number 1700125
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Slow increase of Stieltjes integrals |
scientific article; zbMATH DE number 1700125 |
Statements
3 February 2002
0 references
slowly increasing functions
0 references
Stieltjes integrals
0 references
sufficient conditions
0 references
Slow increase of Stieltjes integrals (English)
0 references
This paper deals with sufficient conditions for slow increase of Stieltjes integrals. In particular, the author proves the following result. Let \(l\) be a positive continuous slowly increasing function on \([a,+\infty)\), let \(l_1\) and \(l_2\) be positive continuous functions on \([a,+\infty)\) such that \(l_1(x)\leq l_2(x)\) for all \(x\geq a\) and let NEWLINE\[NEWLINE{l_2(l^{-1}(2l(2x)))\over l_1(x)}\ln{l(2x)\over l(x)}\to 0,\quad x\to+\infty.NEWLINE\]NEWLINE Let \(L(x)=\int_{a}^{x}\psi(t) dl(t)\), where \(\psi\) is a positive nondecreasing function on \([a,+\infty)\). If \(l_1(x)\leq L(x)\leq l_2(x),\;x\geq a\), then the function \(L\) is slowly increasing on \([a,+\infty)\).
0 references