On the stability of integral sets of impulse systems of differential equations (Q2768856)

From MaRDI portal





scientific article; zbMATH DE number 1700191
Language Label Description Also known as
English
On the stability of integral sets of impulse systems of differential equations
scientific article; zbMATH DE number 1700191

    Statements

    0 references
    0 references
    3 February 2002
    0 references
    impulse system
    0 references
    integral set
    0 references
    stability
    0 references
    Lyapunov method
    0 references
    On the stability of integral sets of impulse systems of differential equations (English)
    0 references
    Here, a nonautonomous impulse system of the form NEWLINE\[NEWLINE\dot{x}=f(t,x),\quad t\neq\tau_i,\quad \Delta x|_{t=\tau_i}=I_i(x),\tag{1}NEWLINE\]NEWLINE with \(x\in \mathbb{R}^n\), \(t\in \mathbb{R}_+ \), \(0=\tau_0<\tau_1<\tau_2\ldots\), \(\lim_{i\to \infty}\tau_i= \infty \) is considered. Based on ideas of the direct Lyapunov method, the authors establish sufficient conditions for stability and asymptotic stability of (positively) integral sets to (1). Namely, let \({\mathcal H}\subset C(\mathbb{R}_+ \mapsto \mathbb{R}_+)\cap C((0,\infty) \mapsto(0,\infty))\) be the set of functions vanishing at the origin of \(\mathbb{R}_+\), and let there exist a set \(M\subset\mathbb{R}_+\times \mathbb{R}^n\) and functions \(V(t,x):\mathbb{R}_+\times \mathbb{R}^n \mapsto \mathbb{R}_+\), \(\varphi,\psi_{i}\in {\mathcal H}\), \(\alpha \in C(\mathbb{R}_+ \mapsto \mathbb{R}_+)\) which satisfy the following conditions: NEWLINE\[NEWLINEV(t,x)=0\;\forall (t,x)\in M; \quad V(t,x)>a(\text{dist}(x,M_t)) \forall (t,x)\in \mathbb{R}_+\times \mathbb{R}^n,NEWLINE\]NEWLINE NEWLINE\[NEWLINEV'_t+\langle \text{grad}_x V,f\rangle \leq-\alpha(t)\varphi(V),\;t\neq\tau_i, \quad V(\tau_i+0,x+I_i(x))\leq\psi(V(\tau_i,x)),\;i=1,2,\ldotsNEWLINE\]NEWLINE Here, \(M_t\) denotes the section of \(M\) by the ``vertical'' hyperplane passing through the point \((t,0)\). The authors impose conditions on the functions \(\alpha,\varphi,\psi_i\) under which the set \(M\) is integral and stable (asymptotically stable).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references