On starlike functions of order \(\lambda\in[{1\over 2},1)\) (Q2769222)

From MaRDI portal





scientific article; zbMATH DE number 1701120
Language Label Description Also known as
English
On starlike functions of order \(\lambda\in[{1\over 2},1)\)
scientific article; zbMATH DE number 1701120

    Statements

    0 references
    0 references
    5 February 2002
    0 references
    function starlike of order \(\alpha\)
    0 references
    \(n\)-th partial sum of a function
    0 references
    convex univalent function
    0 references
    convolution (Hadamard product) of analytic functions
    0 references
    stable functions
    0 references
    Gegenbauer polynomials
    0 references
    On starlike functions of order \(\lambda\in[{1\over 2},1)\) (English)
    0 references
    Let \(zf\) be starlike of order \(\lambda \in [{1 \over 2}, 1)\), and denote by \(s_n(f,z)\) the \(n\)-th partial sum of the Taylor expansion of \(f\) about the origin. The authors then prove that NEWLINE\[NEWLINE {s_n(f,z) \over f(z)}\prec (1-z)^{2\lambda -2}, \quad n \in \mathbb N, NEWLINE\]NEWLINE where \(\prec\) denotes subordination. Applications to Gegenbauer polynomial sums are mentioned, and a new concept of ``stable'' functions is briefly discussed.
    0 references
    0 references

    Identifiers