Multivalent harmonic starlike functions (Q2769250)

From MaRDI portal





scientific article; zbMATH DE number 1701146
Language Label Description Also known as
English
Multivalent harmonic starlike functions
scientific article; zbMATH DE number 1701146

    Statements

    0 references
    0 references
    5 February 2002
    0 references
    harmonic multivalent function
    0 references
    starlike functions
    0 references
    extreme points
    0 references
    multivalent harmonic functions
    0 references
    Multivalent harmonic starlike functions (English)
    0 references
    Denote by \(H(m)\) the class of multivalent harmonic functions \(f=h+ \overline g\) that are sense-preserving in the unit disk \(D=\{z: |z |<1\}\) and \(h\) and \(g\) are of the form NEWLINE\[NEWLINEh(z)=z^m+ \sum^\infty_{n=2} a_{n+ m-1} z^{n+m-1},\;g(z)=\sum^\infty_{n=1}b_{n+m-1}z^{n+m-1},\;|b_m |<1. \tag{1}NEWLINE\]NEWLINE For \(m\geq 1\) let \(SH(m)\) denote the subclass of \(H(m)\) consisting of harmonic starlike functions and let \(TH(m)\) denote the subclass of \(SH(m)\) so that \(h\) and \(g\) are of the form NEWLINE\[NEWLINEh(z)=z^m- \sum^\infty_{n=2} |a_{n+m-1} |z^{n+m-1},\;g(z)=\sum^\infty_{n=1} |b_{n+m-1} |z^{n+m-1}.\tag{2}NEWLINE\]NEWLINE Sufficient coefficient bounds for functions of the form (1) to be in \(SH(m)\) are given. This bounds are necessary if \(f\in TH(m)\). Extreme points, distortion and covering theorems, convolutions and convex combination conditions for these classes of functions are also determined.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references