Scalar curvature of definable Alexandrov spaces (Q2769463)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Scalar curvature of definable Alexandrov spaces |
scientific article; zbMATH DE number 1701491
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Scalar curvature of definable Alexandrov spaces |
scientific article; zbMATH DE number 1701491 |
Statements
Scalar curvature of definable Alexandrov spaces (English)
0 references
6 February 2002
0 references
scalar curvature
0 references
Aleksandrov spaces
0 references
o-minimal structure
0 references
0.91523564
0 references
0.9103823
0 references
0.90115076
0 references
0.89729345
0 references
0 references
0.89347744
0 references
0.8934488
0 references
0.89167273
0 references
0.8916476
0 references
The author considers the definable set \(S\) [see \textit{L. van den Dries}, Tame topology and o-minimal structures. London Mathematical Society Lecture Note Series. 248. Cambridge: Cambridge Univ. Press (1998; Zbl 0953.03045)] and studies the scalar curvature measure on \(S\) -- a generalization of the integral scalar curvature measure of a Riemannian space. The main result of the paper states that if the definable set \(S\) is an Aleksandrov space of curvature \(\geq\kappa\) relative to the induced intrinsic metric of \(S\), then \(\text{scal}( S,\cdot) \geq km(m-1)\text{Vol}(\cdot) \).
0 references