Remarks on infinitely divisible approximations to the binomial law (Q2769665)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Remarks on infinitely divisible approximations to the binomial law |
scientific article; zbMATH DE number 1701847
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Remarks on infinitely divisible approximations to the binomial law |
scientific article; zbMATH DE number 1701847 |
Statements
7 October 2002
0 references
Bernoulli variables
0 references
compound Poisson approximation
0 references
asymptotic expansions
0 references
0.95160925
0 references
0.89211583
0 references
0.8777131
0 references
0.8754847
0 references
0.87158805
0 references
0.8679806
0 references
0 references
Remarks on infinitely divisible approximations to the binomial law (English)
0 references
For any signed measure of bounded variation \(W\) concentrated on integers denote NEWLINE\[NEWLINE|W|_r= \Bigl(\sum_{k\in\mathbb{Z}} \bigl|W\{k\}\bigr |^r \Bigr)^{1/r}, 1\leq r<\infty, \quad\text{and}\quad |W |_\infty =\sup_{k\in\mathbb{Z}} \bigl|W\{k\}\bigr |.NEWLINE\]NEWLINE Let \(H_n={\mathcal L} (\xi_1+ \cdots+ \xi_n)\), where \(\xi_j\), \(j=1,\dots,n\), are independent, \(P \{\xi_j=1\} =p_j=1-P\{\xi_j=0)= 1-q_j\). Under assumptions that \(\sum^n_{j=1} p_jq_j\geq 1\) and \(p_j\leq C_0<1\), \(j=1,\dots,n\), the infinitely divisible distribution \(D_n\) concentrated on integers is constructed such that for \(r\geq 1\) NEWLINE\[NEWLINE|H_n-D_n|_r\leq C(r)\left( \sum^n_{j=1} p^2_j+1\right) \left( \sum^n_{j=1} p_jq_j \right)^{(1-5r)/2r} NEWLINE\]NEWLINE and NEWLINE\[NEWLINE|H_n-D_n|_\infty\leq C\left( \sum^n_{j=1} p^2_j+1\right) \left(\sum^n_{j=1} p_jq_j\right)^{-5/2}.NEWLINE\]NEWLINE Asymptotic expansions are also discussed.NEWLINENEWLINEFor the entire collection see [Zbl 0968.00043].
0 references