On the stochastic behaviour of the digits in the modified Engel-type alternating series representations for real numbers (Q2770368)

From MaRDI portal





scientific article; zbMATH DE number 1703207
Language Label Description Also known as
English
On the stochastic behaviour of the digits in the modified Engel-type alternating series representations for real numbers
scientific article; zbMATH DE number 1703207

    Statements

    27 June 2002
    0 references
    modified Engel-type alternating series representations
    0 references
    real numbers
    0 references
    classic limit theorems
    0 references
    On the stochastic behaviour of the digits in the modified Engel-type alternating series representations for real numbers (English)
    0 references
    Using a new algorithm of \textit{A. Knopfmacher} and \textit{J. Knopfmacher} [Int. J. Math. Math. Sci. 12, 603-613 (1989; Zbl 0683.10008)], the author shows that each real number \(x\) can be uniquely expressed in the form NEWLINE\[NEWLINEx= \alpha_0- \frac{1} {\alpha_1+1} \frac{1} {\alpha_2}+ \frac{1} {(\alpha_1+1)(\alpha_2+2)} \frac{1}{\alpha_3}-\cdots\;,NEWLINE\]NEWLINE where \(\alpha_n\geq 1\), \(\alpha_{n+1}\geq \alpha_n\) \((n=1,2,\dots)\). The digits \(\alpha_n= \alpha_n(x)\) are stochastically independent and identically distributed random variables with respect to the probability space \((I,{\mathcal B}_I,\lambda)\), where \(I= [0,1]\), \({\mathcal B}_I\) is the class of all Borel subsets of \(I\) and \(\lambda\) is the Lebesgue measure. Consequently classic limit theorems can be applied in the study of the metric properties of the sequence \((\alpha_n(x))_{n=1}^\infty\).NEWLINENEWLINEFor the entire collection see [Zbl 0969.00064].
    0 references
    0 references

    Identifiers