Inequalities for certain finite difference and sum-difference equations (Q2770409)

From MaRDI portal





scientific article; zbMATH DE number 1703246
Language Label Description Also known as
English
Inequalities for certain finite difference and sum-difference equations
scientific article; zbMATH DE number 1703246

    Statements

    0 references
    18 March 2003
    0 references
    inequalities
    0 references
    finite difference and sum-difference equations
    0 references
    finite difference inequalities
    0 references
    two independent variable generalizations
    0 references
    Inequalities for certain finite difference and sum-difference equations (English)
    0 references
    Some difference inequalities that can be used in the theory of certain finite differences and sum-difference equations have been obtained. The author establishes the following theorem:NEWLINENEWLINENEWLINETheorem. Let \(u(n),a(n),b(n),f(n),g(n)\) be nonnegative functions defined for \(n\in N_0 \) and \(p>1\) is a real constant. If NEWLINE\[NEWLINE u^p(n)\leq a(n)+b(n)\sum_{s=n+1}^\infty [f(s)u(s)+g(s)],\quad n\in N_0,NEWLINE\]NEWLINE then NEWLINE\[NEWLINEu(n)\leq \left[ a(n)+b(n)A(n)\prod_{s=n+1}^\infty \left( 1+\frac{b(s)}pf(s)\right)\right]^{1/p},\quad n\in N_0,NEWLINE\]NEWLINE where NEWLINE\[NEWLINEA(n)=\sum_{s=n+1}^\infty \left[ f(s)\left( \frac{p-1}p+\frac{a(s)}p\right) +g(s)\right], \quad n\in N_0.NEWLINE\]
    0 references
    0 references

    Identifiers