Inequalities for certain finite difference and sum-difference equations (Q2770409)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Inequalities for certain finite difference and sum-difference equations |
scientific article; zbMATH DE number 1703246
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Inequalities for certain finite difference and sum-difference equations |
scientific article; zbMATH DE number 1703246 |
Statements
18 March 2003
0 references
inequalities
0 references
finite difference and sum-difference equations
0 references
finite difference inequalities
0 references
two independent variable generalizations
0 references
Inequalities for certain finite difference and sum-difference equations (English)
0 references
Some difference inequalities that can be used in the theory of certain finite differences and sum-difference equations have been obtained. The author establishes the following theorem:NEWLINENEWLINENEWLINETheorem. Let \(u(n),a(n),b(n),f(n),g(n)\) be nonnegative functions defined for \(n\in N_0 \) and \(p>1\) is a real constant. If NEWLINE\[NEWLINE u^p(n)\leq a(n)+b(n)\sum_{s=n+1}^\infty [f(s)u(s)+g(s)],\quad n\in N_0,NEWLINE\]NEWLINE then NEWLINE\[NEWLINEu(n)\leq \left[ a(n)+b(n)A(n)\prod_{s=n+1}^\infty \left( 1+\frac{b(s)}pf(s)\right)\right]^{1/p},\quad n\in N_0,NEWLINE\]NEWLINE where NEWLINE\[NEWLINEA(n)=\sum_{s=n+1}^\infty \left[ f(s)\left( \frac{p-1}p+\frac{a(s)}p\right) +g(s)\right], \quad n\in N_0.NEWLINE\]
0 references