Refined convexity and special cases of the Blaschke-Santalo inequality (Q2770421)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Refined convexity and special cases of the Blaschke-Santalo inequality |
scientific article; zbMATH DE number 1703258
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Refined convexity and special cases of the Blaschke-Santalo inequality |
scientific article; zbMATH DE number 1703258 |
Statements
Refined convexity and special cases of the Blaschke-Santalo inequality (English)
0 references
19 August 2003
0 references
Psi function
0 references
Gamma function
0 references
modified convexity
0 references
volume of \(p\)-balls
0 references
Blaschke-Santalo inequality
0 references
substitution norm
0 references
0 references
0.89991933
0 references
0.8988728
0 references
0 references
0.89643776
0 references
0 references
0.89381695
0 references
The authors use the following modified version of convexity of functions: If \(\varphi\) is a real, continuous strictly monotonic function defined on an interval \(I\), then \(M:I^2 \rightarrow I\) defined as NEWLINE\[NEWLINE M(x,y):=\varphi^{-1}((\varphi(x) + \varphi(y))/2) NEWLINE\]NEWLINE is called a quasi-arithmetic mean. NEWLINENEWLINENEWLINESimilarly NEWLINE\[NEWLINE M^{(\lambda)}(x,y):= \varphi^{-1}(\lambda \varphi (x) + (1-\lambda)\varphi (y)) NEWLINE\]NEWLINE for \(\lambda \in [0,1]\) is the weighted version of \(M\). NEWLINENEWLINENEWLINEFor any two quasi-arithmetic means \(M\), \(N\), a function \(f:I \rightarrow J\) is called \((M,N)\)-convex if it satisfies NEWLINE\[NEWLINE f(M^{\lambda}(x,y)) \leq N^{\lambda}(f(x),f(y)) NEWLINE\]NEWLINE for all \(x,y \in I\) and for all \(\lambda \in [0,1]\). NEWLINENEWLINENEWLINEUsing this modified notion of convexity the authors derive the \(\|. \|_p\)-norm version of the classical Blaschke-Santalo inequality for polar volumes. They also give analogs for the \((p,q)\)-substitution norm.
0 references