Sobolev regularity for \(t>0\) in quasilinear parabolic equations (Q2770429)

From MaRDI portal





scientific article; zbMATH DE number 1703275
Language Label Description Also known as
English
Sobolev regularity for \(t>0\) in quasilinear parabolic equations
scientific article; zbMATH DE number 1703275

    Statements

    22 April 2002
    0 references
    asymptotically parabolic nature
    0 references
    diffusion phenomenon for quasilinear dissipative wave equations
    0 references
    0 references
    Sobolev regularity for \(t>0\) in quasilinear parabolic equations (English)
    0 references
    The author establishes a regularity property for the solutions to the quasilinear parabolic initial-boundary value problem NEWLINE\[NEWLINE \left\{\begin{aligned} v_t-a_{ij}(\nabla v) \partial_i\partial_j v=g(x,t) & \quad \text{ in}\quad \Omega\times(0,T),\\v(x,0)=v_0(x) & \quad \text{ in}\quad \Omega\times \{t=0\},\\ v(\cdot, t)=0 & \quad \text{ in}\quad \partial\Omega\times (0,T).\end{aligned}\right. NEWLINE\]NEWLINE It is shown that for \(t>0\) the solutions belong to the same space to which the solutions of the following second-order hyperbolic problem NEWLINE\[NEWLINE \left\{\begin{aligned} \varepsilon u_{tt}+u_t-a_{ij}(\nabla u) \partial_i\partial_j u=f(x,t) & \quad \text{ in}\quad \Omega\times(0,T),\\ u(x,0)=u_0(x),\quad u_t(x,0)=u_1(x) & \quad \text{ in} \quad \Omega\times \{t=0\},\\ u(\cdot, t)=0 & \quad \text{ in} \quad \partial\Omega\times (0,T)\end{aligned}\right. NEWLINE\]NEWLINE which is a singular perturbation of the parabolic one. The result provides another illustration of the asymptotically parabolic nature of the hyperbolic problem and is needed to establish the diffusion phenomenon for quasilinear dissipative wave equations in Sobolev spaces.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references