Sobolev regularity for \(t>0\) in quasilinear parabolic equations (Q2770429)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sobolev regularity for \(t>0\) in quasilinear parabolic equations |
scientific article; zbMATH DE number 1703275
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sobolev regularity for \(t>0\) in quasilinear parabolic equations |
scientific article; zbMATH DE number 1703275 |
Statements
22 April 2002
0 references
asymptotically parabolic nature
0 references
diffusion phenomenon for quasilinear dissipative wave equations
0 references
0.96644807
0 references
0.93483716
0 references
0.9268923
0 references
0.92669463
0 references
0.9265998
0 references
0.9191518
0 references
0.91908365
0 references
Sobolev regularity for \(t>0\) in quasilinear parabolic equations (English)
0 references
The author establishes a regularity property for the solutions to the quasilinear parabolic initial-boundary value problem NEWLINE\[NEWLINE \left\{\begin{aligned} v_t-a_{ij}(\nabla v) \partial_i\partial_j v=g(x,t) & \quad \text{ in}\quad \Omega\times(0,T),\\v(x,0)=v_0(x) & \quad \text{ in}\quad \Omega\times \{t=0\},\\ v(\cdot, t)=0 & \quad \text{ in}\quad \partial\Omega\times (0,T).\end{aligned}\right. NEWLINE\]NEWLINE It is shown that for \(t>0\) the solutions belong to the same space to which the solutions of the following second-order hyperbolic problem NEWLINE\[NEWLINE \left\{\begin{aligned} \varepsilon u_{tt}+u_t-a_{ij}(\nabla u) \partial_i\partial_j u=f(x,t) & \quad \text{ in}\quad \Omega\times(0,T),\\ u(x,0)=u_0(x),\quad u_t(x,0)=u_1(x) & \quad \text{ in} \quad \Omega\times \{t=0\},\\ u(\cdot, t)=0 & \quad \text{ in} \quad \partial\Omega\times (0,T)\end{aligned}\right. NEWLINE\]NEWLINE which is a singular perturbation of the parabolic one. The result provides another illustration of the asymptotically parabolic nature of the hyperbolic problem and is needed to establish the diffusion phenomenon for quasilinear dissipative wave equations in Sobolev spaces.
0 references