Estimates with global range for oscillatory integrals with concave phase (Q2773344)

From MaRDI portal





scientific article; zbMATH DE number 1709934
Language Label Description Also known as
English
Estimates with global range for oscillatory integrals with concave phase
scientific article; zbMATH DE number 1709934

    Statements

    Estimates with global range for oscillatory integrals with concave phase (English)
    0 references
    21 February 2002
    0 references
    oscillatory integral
    0 references
    summability of Fourier integral
    0 references
    maximal function
    0 references
    Sobolev regularity
    0 references
    The author considers the maximal function \(\|(S^a f)[x]\|_{L^\infty[-1,1]}\), where NEWLINE\[NEWLINE(S^a f)(t)^\land(\xi)=e^{it|\xi|^a}\hat f(\xi)NEWLINE\]NEWLINE for \(\xi\in\mathbb R\) and \(0<a<1\). He proves the global estimate NEWLINE\[NEWLINE\|S^a f\|_{L^2(\mathbb R,L^\infty[-1,1])}\leq C\|f\|_{H^s(\mathbb R)}NEWLINE\]NEWLINE for \(s>a/4\), where \(C\) is independent of \(f\), which is known to be almost sharp with respect to the Sobolev regularity \(s\).
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references