Pointwise inequalities and approximation in fractional Sobolev spaces (Q2773416)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pointwise inequalities and approximation in fractional Sobolev spaces |
scientific article; zbMATH DE number 1710006
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pointwise inequalities and approximation in fractional Sobolev spaces |
scientific article; zbMATH DE number 1710006 |
Statements
Pointwise inequalities and approximation in fractional Sobolev spaces (English)
0 references
21 February 2002
0 references
capacity
0 references
approximation by smooth functions
0 references
fractional Sobolev space
0 references
Bessel potential space
0 references
Calderón-Zygmund extension operator
0 references
0.9438167
0 references
0.9432651
0 references
0.93065727
0 references
0 references
0.92834115
0 references
0.9259993
0 references
0.9217988
0 references
0.9205787
0 references
0.91800606
0 references
Let \(L^{\alpha, p}(\mathbb{R}^n)\) be a fractional Sobolev space (i.e. a Bessel potential space), \(1< p<\infty\), \(\alpha> 0\), with norm \(\|\;\|_{\alpha, p}\), and let \(B_{\alpha, p}(E)\) denote the \((\alpha, p)\)-capacity of a set \(E\subset \mathbb{R}^n\). Suppose \(m\) is an integer such that \(0\leq m\leq \alpha- 1\) and \(0\leq \lambda< 1\). The following theorem is proved:NEWLINENEWLINENEWLINEFor every function \(f\in L^{\alpha, p}(\mathbb{R}^n)\) and every \(\varepsilon> 0\) there exists a function \(g\in C^{m,\lambda}(\mathbb{R}^n)\) and an open set \(\Omega\subset \mathbb{R}^n\) satisfying the conditionsNEWLINENEWLINENEWLINE1) \(B_{\alpha- m-\lambda, p}(\Omega)< \varepsilon\),NEWLINENEWLINENEWLINE2) \(D^\sigma f(x)= D^\sigma g(x)\) for all \(x\in \mathbb{R}^n\setminus\Omega\) and all multiindices \(|\sigma|\leq m\),NEWLINENEWLINENEWLINE3) \(\|f-g\|_{m+ 1,p}< \varepsilon\).NEWLINENEWLINENEWLINEThis result is proved applying the Calderón-Zygmund extension operator, separately for \(\lambda= 0\) and for \(0<\lambda< 1\). It extends a number of earlier results.
0 references