Weighted inequalities for the Riemann--Liouville operators on piecewise monotone functions (Q2773584)

From MaRDI portal





scientific article; zbMATH DE number 1710218
Language Label Description Also known as
English
Weighted inequalities for the Riemann--Liouville operators on piecewise monotone functions
scientific article; zbMATH DE number 1710218

    Statements

    24 February 2002
    0 references
    integral operator
    0 references
    Riemann-Liouville operator
    0 references
    weighted inequalities
    0 references
    0 references
    Weighted inequalities for the Riemann--Liouville operators on piecewise monotone functions (English)
    0 references
    The author exposes necessary and sufficient conditions for boundedness of integral operators of the form NEWLINE\[NEWLINE I_{\alpha}f(x) = \int_0^x(x-y)^{\alpha - 1}f(y) dy,\quad J_{\alpha}g(x) = \int_x^{\infty}(y-x)^{\alpha - 1}g(y) dy NEWLINE\]NEWLINE which act from \(L_{p,w}[0,\infty)\) to \(L_{q,v}[0,\infty)\), where \(\alpha > 0\), \(1 < p,q<\infty\) and \(f(y)\), \(g(y)\) are piecewise monotone functions.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references