Complete asymptotic expansions of the Fermi-Dirac integrals \(\mathcal F_ p(\eta)=1/\Gamma(p+1)\int^ \infty_ 0 [\epsilon^ p/(1+e^{\epsilon-\eta})]d\epsilon\). (Q2774867)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Complete asymptotic expansions of the Fermi-Dirac integrals \(\mathcal F_ p(\eta)=1/\Gamma(p+1)\int^ \infty_ 0 [\epsilon^ p/(1+e^{\epsilon-\eta})]d\epsilon\). |
scientific article; zbMATH DE number 1711311
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Complete asymptotic expansions of the Fermi-Dirac integrals \(\mathcal F_ p(\eta)=1/\Gamma(p+1)\int^ \infty_ 0 [\epsilon^ p/(1+e^{\epsilon-\eta})]d\epsilon\). |
scientific article; zbMATH DE number 1711311 |
Statements
26 February 2002
0 references
Complete asymptotic expansions of the Fermi-Dirac integrals \(\mathcal F_ p(\eta)=1/\Gamma(p+1)\int^ \infty_ 0 [\epsilon^ p/(1+e^{\epsilon-\eta})]d\epsilon\). (English)
0 references