On an application of the Hardy classes to the Riemann zeta-function. (Q2776896)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On an application of the Hardy classes to the Riemann zeta-function. |
scientific article; zbMATH DE number 1716884
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On an application of the Hardy classes to the Riemann zeta-function. |
scientific article; zbMATH DE number 1716884 |
Statements
2001
0 references
Riemann zeta-function
0 references
\(H_p\)-classes
0 references
0 references
0.8986955
0 references
0.89214313
0 references
0 references
0.8845693
0 references
On an application of the Hardy classes to the Riemann zeta-function. (English)
0 references
Für \(0<p\leq \infty\) ist die Hardyklasse \(H_p\) die Menge aller in \(\{z\in {\mathbb C}\mid | z| <1\}\) holomorphen Funktionen \(g\) mit \(\sup_{0 \leq r<1}\int_{-\pi}^\pi | g(re^{it})| ^p\,dt <\infty\) im Falle \(p<\infty\) und \(\sup _{0\leq r<1}\max_{-\pi\leq t\leq \pi}| g(re^{it})| <\infty\) im Falle \(p=\infty\). Die Verf. beweisen, dass die in \(| z| <1\) durch \({{z\over {1-z}}\zeta({1\over {1-z}})}\) definierte Funktion \(f\) genau dann zu \(H_p\) gehört, wenn \(0<p<1\) ist.NEWLINENEWLINEDamit verschärfen sie deutlich die von \textit{M. Balazard}, \textit{E. Saias} und \textit{M. Yor} [Adv. Math. 143, 284--287 (1999; Zbl 0937.11032)] bewiesene Aussage \(f\in H_{1\over {3}}\).
0 references