Finite cotangent sums and the Riemann zeta function (Q2777498)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Finite cotangent sums and the Riemann zeta function |
scientific article; zbMATH DE number 1717364
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Finite cotangent sums and the Riemann zeta function |
scientific article; zbMATH DE number 1717364 |
Statements
7 March 2002
0 references
Riemann zeta function
0 references
finite sum
0 references
Finite cotangent sums and the Riemann zeta function (English)
0 references
The authors give a closed formula for the sums NEWLINE\[NEWLINE \sum _{p=0}^{q-1} \operatorname {cot}^n \left [\frac {(\xi +p)\pi} q\right], \qquad \sum _{p=1}^{q-1} \operatorname {cot}^{2n} \left (\frac {p\pi} q\right), NEWLINE\]NEWLINE where \(n\) and \(q\) are positive integers \((q\geq 2)\) and \(\xi \) is a non-integer real number. This leads to simplifications of \textit{T. Apostol}'s formula concerning the Riemann \(\zeta \)-functions; [see Am. Math. Mon. 80, 425-431 (1973; Zbl 0267.10050)].
0 references