On Bochner semisymmetric para-Kählerian manifolds (Q2777567)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On Bochner semisymmetric para-Kählerian manifolds |
scientific article; zbMATH DE number 1717437
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On Bochner semisymmetric para-Kählerian manifolds |
scientific article; zbMATH DE number 1717437 |
Statements
5 February 2004
0 references
para-Kählerian manifold
0 references
semisymmetric
0 references
Bochner flat
0 references
On Bochner semisymmetric para-Kählerian manifolds (English)
0 references
Starting with the fact that a semisymmetric (\(R\cdot R=0\)) para-Kählerian manifold is Bochner semisymmetric (\(R\cdot B=0\)), the author proves a partial inverse theorem: If a para-Kählerian manifold \(M\) is Bochner semisymmetric and the Bochner curvature tensor \(B\) does not vanish at each points \(x\in M\), then \(M\) is semisymmetric. Moreover, the author provides examples of para-Kählerian manifolds which are: (1) semisymmetric and not Bochner flat; (2) Bochner flat and not semisymmetric.
0 references