On recurrence relations for Bernoulli and Euler numbers (Q2777721)

From MaRDI portal





scientific article; zbMATH DE number 1717650
Language Label Description Also known as
English
On recurrence relations for Bernoulli and Euler numbers
scientific article; zbMATH DE number 1717650

    Statements

    On recurrence relations for Bernoulli and Euler numbers (English)
    0 references
    0 references
    0 references
    24 November 2002
    0 references
    Bernoulli numbers
    0 references
    Euler numbers
    0 references
    Genocchi numbers
    0 references
    For any integers \(n\geq 1\), \(m\geq 0\), the authors prove the identities NEWLINE\[NEWLINE \sum\limits_{k=\max (n-m,0)}^{2n}\binom {m+n+1}{m-n+k}\binom {2m+k+1}kB_k=0, NEWLINE\]NEWLINE NEWLINE\[NEWLINE \sum\limits_{k=\max (n-m,0)}^{2n}\binom {m+n+1}{m-n+k}\binom {2m+k+1}k\frac{B_k}{2^k}=(-1)^n\frac{m+1}{2^{2n+1}}\binom {m+n+1}n, NEWLINE\]NEWLINE where \(B_k\) are the Bernoulli numbers. Similar relations are found for the Euler and Genocchi numbers.
    0 references

    Identifiers