An inequality of Bohr and Favard for Orlicz spaces (Q2777733)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An inequality of Bohr and Favard for Orlicz spaces |
scientific article; zbMATH DE number 1717662
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An inequality of Bohr and Favard for Orlicz spaces |
scientific article; zbMATH DE number 1717662 |
Statements
13 April 2003
0 references
Bohr-Favard inequality
0 references
inequalities for derivatives
0 references
Orlicz spaces
0 references
Fourier transform
0 references
Young function
0 references
0.81267816
0 references
0.7523346
0 references
0.7380024
0 references
0 references
0.7224415
0 references
0.7096595
0 references
0 references
An inequality of Bohr and Favard for Orlicz spaces (English)
0 references
If \(f, f',\dots ,f^{(n)}\) are continuous and bounded on \(\mathbb R\) and supp\(\hat f\cap (-\sigma ,\sigma)=\emptyset\), where \(\hat f\) is the Fourier transform of \(f\), then the Bohr-Favard inequality NEWLINE\[NEWLINE \|f\|_{\infty }\leq \sigma^{-n}K_n\|f^{(n)}\|_{\infty } NEWLINE\]NEWLINE holds. The Favard constant \(K_n\) does not depend on \(f\) and is best possible. NEWLINENEWLINENEWLINEBy mean of Stein's methods [\textit{E. M. Stein}, ``Functions of exponential type'', Ann. Math. (2) 65, 582-592 (1957; Zbl 0079.13103)], this result can be extended to \(L^p\)-norms \((1\leq p<\infty)\). NEWLINENEWLINENEWLINEIn this paper, the author proves an Orlicz space version of the above inequality. More precisely, it is shown that if \(\Phi\) is a Young function, \(f\) and its generalized derivative \(f^{(n)}\) are in the Orlicz space \(L_{\Phi }(\mathbb R)\) and supp\(\hat f\cap (-\sigma ,\sigma)=\emptyset\), then \(f^{(k)}\in L_{\Phi }(\mathbb R)\) for all \(0<k<n\) and NEWLINE\[NEWLINE \|f\|_{\Phi }\leq \sigma^{-n}K_n\|f^{(n)}\|_{\Phi }, NEWLINE\]NEWLINE where \(\|\cdot \|_{\Phi }\) is the Orlicz norm in \(L_{\Phi }(\mathbb R)\). NEWLINENEWLINENEWLINEThe proof works essentially developing Stein's method.
0 references