Stabilization of heterogeneous Maxwell's equations by linear or nonlinear boundary feedbacks (Q2778488)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Stabilization of heterogeneous Maxwell's equations by linear or nonlinear boundary feedbacks |
scientific article; zbMATH DE number 1716059
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Stabilization of heterogeneous Maxwell's equations by linear or nonlinear boundary feedbacks |
scientific article; zbMATH DE number 1716059 |
Statements
2 April 2002
0 references
boundary control
0 references
Maxwell system
0 references
controllability
0 references
stability
0 references
nonlinear feedbacks
0 references
decay rate of the energy
0 references
Liu's principle
0 references
\((\varepsilon,\mu)\)-stability
0 references
Stabilization of heterogeneous Maxwell's equations by linear or nonlinear boundary feedbacks (English)
0 references
The attention of the authors is focused on the Maxwell equations with a nonlinear boundary condition NEWLINE\[NEWLINE\begin{cases} \varepsilon{dE\over\partial t}-\text{curl }H= 0\quad &\text{in }Q:= \Gamma\times\;]0,+\infty[, \\ \mu{\partial H\over\partial t}+ \text{curl }E= 0\quad &\text{in }Q,\\ \text{div}(\varepsilon E)= \text{div}(\mu H)= 0\quad &\text{in }Q,\\ H\times\nu+ g(E\times \nu)x\nu= 0\quad &\text{on }\Sigma:= \Gamma\times\;]0,+\infty[,\\ E(0)= E_0,\;H(0)= H_0\quad &\text{in }\Omega.\end{cases}\tag{1}NEWLINE\]NEWLINE First the authors consider the linear case (i.e. \(g(E)= E\)). In this case the boundary condition is the classical Silver-Müller boundary condition, and the energy NEWLINE\[NEWLINE\varepsilon(t)= \textstyle{{1\over 2}} \displaystyle{\int_\Omega \{\varepsilon|E(t,x)|^2+ \mu|H(t, x)|^2\} dx}NEWLINE\]NEWLINE is nonincreasing. The domain \(\Omega\) is said to satisfy the \((\varepsilon, \mu)\)-stability estimate if there exist \(T> 0\) and two nonnegative constants \(C_1\), \(C_2\) (which may depend on \(T\)) with \(C_1< T\) such that NEWLINE\[NEWLINE\int^T_0 \varepsilon(t) dt\leq C_1\varepsilon(0)+ C_2\int^T_0 \int_\Gamma|H(t)\times \nu|^2 d\sigma dt,NEWLINE\]NEWLINE for all solutions \(\left(\begin{smallmatrix} E(t)\\ H(t)\end{smallmatrix}\right)\) of (1) with \(g(E)= E\).NEWLINENEWLINENEWLINEIt is stated that \(\Omega\) satisfies the \((\varepsilon,\mu)\)-stability estimate if and only if there exist two positive constants \(M\) and \(\omega\) such that NEWLINE\[NEWLINE\varepsilon(t)\leq Me^{-\omega t}\varepsilon(0),NEWLINE\]NEWLINE for all solutions \(\left(\begin{smallmatrix} E(t)\\ H(t)\end{smallmatrix}\right)\) of (1) with \(g(E)= E\).NEWLINENEWLINENEWLINEBased on the linear stability estimate a certain controllability result is obtained for the Maxwell system. More exactly, for all \((E_0, H_0)\) in a certain Hilbert space there exist \(T> 0\) and a control \(J\in L^2(\Gamma\times \;]0,T[)^3\) such that the solution \((E,H)\) of NEWLINE\[NEWLINE\begin{cases} \varepsilon{\partial E\over\partial t}- \text{curl }H= 0\quad &\text{in }Q_T:= \Omega\times\;]0,T[,\\ \mu{\partial H\over\partial t}+ \text{curl }E= 0\quad &\text{in }Q_T,\\ \text{div}(\varepsilon E)= \text{div}(\mu H)= 0\quad &\text{in }Q_T,\\ H\times\nu= J\quad &\text{on }\Sigma_T:= \Gamma\times \;]0,T[,\\ E(0)= E_0,\;H(0)= H_0\quad &\text{in }\Omega\end{cases}NEWLINE\]NEWLINE satisfies \(E(T)= H(T)= 0\).NEWLINENEWLINENEWLINEFinally, for the general system (1), sufficient conditions on \(g\) are given which lead to an explicit decay rate of the energy. For this purpose, the authors use Liu's principle, based on the \((\varepsilon,\mu)\)-stability estimate, and a certain integral inequality.
0 references