Stabilization of heterogeneous Maxwell's equations by linear or nonlinear boundary feedbacks (Q2778488)

From MaRDI portal





scientific article; zbMATH DE number 1716059
Language Label Description Also known as
English
Stabilization of heterogeneous Maxwell's equations by linear or nonlinear boundary feedbacks
scientific article; zbMATH DE number 1716059

    Statements

    0 references
    0 references
    0 references
    2 April 2002
    0 references
    boundary control
    0 references
    Maxwell system
    0 references
    controllability
    0 references
    stability
    0 references
    nonlinear feedbacks
    0 references
    decay rate of the energy
    0 references
    Liu's principle
    0 references
    \((\varepsilon,\mu)\)-stability
    0 references
    Stabilization of heterogeneous Maxwell's equations by linear or nonlinear boundary feedbacks (English)
    0 references
    The attention of the authors is focused on the Maxwell equations with a nonlinear boundary condition NEWLINE\[NEWLINE\begin{cases} \varepsilon{dE\over\partial t}-\text{curl }H= 0\quad &\text{in }Q:= \Gamma\times\;]0,+\infty[, \\ \mu{\partial H\over\partial t}+ \text{curl }E= 0\quad &\text{in }Q,\\ \text{div}(\varepsilon E)= \text{div}(\mu H)= 0\quad &\text{in }Q,\\ H\times\nu+ g(E\times \nu)x\nu= 0\quad &\text{on }\Sigma:= \Gamma\times\;]0,+\infty[,\\ E(0)= E_0,\;H(0)= H_0\quad &\text{in }\Omega.\end{cases}\tag{1}NEWLINE\]NEWLINE First the authors consider the linear case (i.e. \(g(E)= E\)). In this case the boundary condition is the classical Silver-Müller boundary condition, and the energy NEWLINE\[NEWLINE\varepsilon(t)= \textstyle{{1\over 2}} \displaystyle{\int_\Omega \{\varepsilon|E(t,x)|^2+ \mu|H(t, x)|^2\} dx}NEWLINE\]NEWLINE is nonincreasing. The domain \(\Omega\) is said to satisfy the \((\varepsilon, \mu)\)-stability estimate if there exist \(T> 0\) and two nonnegative constants \(C_1\), \(C_2\) (which may depend on \(T\)) with \(C_1< T\) such that NEWLINE\[NEWLINE\int^T_0 \varepsilon(t) dt\leq C_1\varepsilon(0)+ C_2\int^T_0 \int_\Gamma|H(t)\times \nu|^2 d\sigma dt,NEWLINE\]NEWLINE for all solutions \(\left(\begin{smallmatrix} E(t)\\ H(t)\end{smallmatrix}\right)\) of (1) with \(g(E)= E\).NEWLINENEWLINENEWLINEIt is stated that \(\Omega\) satisfies the \((\varepsilon,\mu)\)-stability estimate if and only if there exist two positive constants \(M\) and \(\omega\) such that NEWLINE\[NEWLINE\varepsilon(t)\leq Me^{-\omega t}\varepsilon(0),NEWLINE\]NEWLINE for all solutions \(\left(\begin{smallmatrix} E(t)\\ H(t)\end{smallmatrix}\right)\) of (1) with \(g(E)= E\).NEWLINENEWLINENEWLINEBased on the linear stability estimate a certain controllability result is obtained for the Maxwell system. More exactly, for all \((E_0, H_0)\) in a certain Hilbert space there exist \(T> 0\) and a control \(J\in L^2(\Gamma\times \;]0,T[)^3\) such that the solution \((E,H)\) of NEWLINE\[NEWLINE\begin{cases} \varepsilon{\partial E\over\partial t}- \text{curl }H= 0\quad &\text{in }Q_T:= \Omega\times\;]0,T[,\\ \mu{\partial H\over\partial t}+ \text{curl }E= 0\quad &\text{in }Q_T,\\ \text{div}(\varepsilon E)= \text{div}(\mu H)= 0\quad &\text{in }Q_T,\\ H\times\nu= J\quad &\text{on }\Sigma_T:= \Gamma\times \;]0,T[,\\ E(0)= E_0,\;H(0)= H_0\quad &\text{in }\Omega\end{cases}NEWLINE\]NEWLINE satisfies \(E(T)= H(T)= 0\).NEWLINENEWLINENEWLINEFinally, for the general system (1), sufficient conditions on \(g\) are given which lead to an explicit decay rate of the energy. For this purpose, the authors use Liu's principle, based on the \((\varepsilon,\mu)\)-stability estimate, and a certain integral inequality.
    0 references

    Identifiers