Simple modules for modular Lie superalgebras \(W(0|n)\), \(S(0|n)\), and \(K(n)\) (Q277891)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Simple modules for modular Lie superalgebras \(W(0|n)\), \(S(0|n)\), and \(K(n)\) |
scientific article; zbMATH DE number 6575783
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Simple modules for modular Lie superalgebras \(W(0|n)\), \(S(0|n)\), and \(K(n)\) |
scientific article; zbMATH DE number 6575783 |
Statements
Simple modules for modular Lie superalgebras \(W(0|n)\), \(S(0|n)\), and \(K(n)\) (English)
0 references
2 May 2016
0 references
Summary: This paper constructs a series of modules from modular Lie superalgebras \(W(0 | n)\), \(S(0 | n)\), and \(K(n)\) over a field of prime characteristic \(p \neq 2\). Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the sufficient conditions of these modules are irreducible \(L\)-modules, where \(L = W(0|n)\), \(S(0|n)\), and \(K(n)\).
0 references
0 references
0 references
0 references