Variational property of the Monge-Ampère operator on Kähler manifolds (Q2780399)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Variational property of the Monge-Ampère operator on Kähler manifolds |
scientific article; zbMATH DE number 1728931
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Variational property of the Monge-Ampère operator on Kähler manifolds |
scientific article; zbMATH DE number 1728931 |
Statements
10 April 2003
0 references
Monge-Ampere operator
0 references
Kähler manifold
0 references
Variational property of the Monge-Ampère operator on Kähler manifolds (English)
0 references
Let \((V,g)\) be a compact Kähler manifold. For a real valued function \(\varphi\in C^{2,\alpha} (V)\) such that \(g'_{\lambda \overline\mu}= g_{\lambda \overline\mu} +\nabla_{\lambda \overline\mu} \varphi\) defines a positive definite form, set \(M(\varphi)= \det(g_{\lambda \overline\mu}+ \nabla_{\lambda \overline\mu} \varphi) \cdot\det(g_{\lambda \overline\mu})^{-1}\) -- the value of the Monge-Ampere operator on \(\varphi\). This is a function \(M: C^{2,\alpha}\to C^{0,\alpha}\). The authors write down explicitly a certain smooth functional \(F:C^{2,\alpha} \to\mathbb{R}\) such that its \(L^2\)-gradient is \(M\), i.e. NEWLINE\[NEWLINE\delta F(\varphi)h= \bigl\langle M(\varphi), h\rangle_{L_2}.NEWLINE\]NEWLINE This shows, in particular, that the Monge-Ampere equation is of variational type.
0 references