On the structure of \(P(n)_*P((n))\) for \(p=2\) (Q2781381)

From MaRDI portal





scientific article; zbMATH DE number 1721125
Language Label Description Also known as
English
On the structure of \(P(n)_*P((n))\) for \(p=2\)
scientific article; zbMATH DE number 1721125

    Statements

    0 references
    19 March 2002
    0 references
    Baas-Sullivan singularities
    0 references
    non-commutative ring spectra
    0 references
    Hopf algebras
    0 references
    On the structure of \(P(n)_*P((n))\) for \(p=2\) (English)
    0 references
    Let \(BP\) be the Brown-Peterson spectrum for \(p=2\), and let \(P(n)\) be the spectrum obtained from \(BP\) by introducing the Baas-Sullivan singularities \(\{2, v_1, \ldots, v_{n-1}\}\) where \(\{v_i\}\) is a system of polynomial generators of \(\pi_*(BP)\). \textit{R. Kultze} and \textit{U. Würgler} [Manuscr. Math. 57, 195-203 (1987; Zbl 0611.55004)] computed the algebra \(P(n)_*(P(n))\). The author searches the coalgebra structure for \(P(n)_*(P(n))\) and, in particular, proves that \(P(n)_*(P(n))\) is not a Hopf algebra.
    0 references
    0 references

    Identifiers