A three-dimensional Lagrangian four-web with no Abelian relation (Q2782012)

From MaRDI portal





scientific article; zbMATH DE number 1727400
Language Label Description Also known as
English
A three-dimensional Lagrangian four-web with no Abelian relation
scientific article; zbMATH DE number 1727400

    Statements

    11 April 2002
    0 references
    Hamiltonian
    0 references
    Lagrangian submanifold
    0 references
    contact 1-form
    0 references
    abelian relation
    0 references
    0 references
    A three-dimensional Lagrangian four-web with no Abelian relation (English)
    0 references
    Consider the Hamiltonian \(\tau - \sqrt{\xi^2 + \eta^2}\) in \(\mathbb{R}^6\) equipped with the symplectic form \(d \xi \wedge dx + d\eta \wedge dy + d \tau \wedge dt\). Denote by \(\Sigma\) a Lagrangian submanifold in \(\mathbb{R}^6\) associated with this Hamiltonian. Set \(u = x + t \frac{\xi}{\tau}\) and \(v = y + t \frac{\eta}{\tau}\). Then the contact 1-form \(\xi dx + \eta dy + \tau dt = \xi du + \eta dv\) is closed. Thus there is a locally defined function \(\psi (u, v)\) giving a local parametrization of \(\Sigma\): NEWLINE\[NEWLINE \begin{pmatrix} x \\y\end{pmatrix} = \begin{pmatrix} u \\ v\end{pmatrix} - t \frac{\nabla \psi (u, v)}{|\nabla \psi (u, v)|},\quad \begin{pmatrix} \xi \\ \eta\end{pmatrix} = \nabla \psi (u, v),\quad t = t,\quad \tau = |\nabla \psi (u, v)|. NEWLINE\]NEWLINE The map \(\Phi\colon \mathbb{R}^3 \rightarrow \mathbb{R}^3\) defined by NEWLINE\[NEWLINE \begin{pmatrix} x \\y\end{pmatrix} = \begin{pmatrix} u \\ v\end{pmatrix} - t \frac{\nabla \psi (u, v)}{|\nabla \psi (u, v)|} NEWLINE\]NEWLINE gives \((x, y, t)\) in terms of \((u, v, t)\). This map provides all the information needed to reconstruct the entire Lagrangian submanifold \(\Sigma\). If \((x, y, t)\) possesses several preimages \((u_k, v_k, t)\), then each of these preimages defines a 1-form \(d \psi_k (x, y, t)\).NEWLINENEWLINENEWLINEThe phase \(\psi\) is called resonant near \((x_0, y_0, t)\) if the web defined near \((x_0, y_0, t)\) by the 1-forms \(d \psi_k (x, y, t)\) admits an abelian relation.NEWLINENEWLINENEWLINEIn the paper under review the author considers the case when \(\psi (u, v) = \frac{1}{2} (au^2 + bv^2), a, b \neq 0, a \neq b\), is a quadratic nondegenerate function, and proves that then the map \(\Phi\) is algebraic of degree 4, and the 4-web of codimension 1 in \(\mathbb{R}^3\) defined by the 1-forms \(d \psi_k\) admits no abelian relation.NEWLINENEWLINEFor the entire collection see [Zbl 0983.00024].
    0 references

    Identifiers