A starlikeness criterion for holomorphic mappings on balanced pseudoconvex domains (Q2782683)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A starlikeness criterion for holomorphic mappings on balanced pseudoconvex domains |
scientific article; zbMATH DE number 1725373
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A starlikeness criterion for holomorphic mappings on balanced pseudoconvex domains |
scientific article; zbMATH DE number 1725373 |
Statements
8 April 2002
0 references
balanced domain
0 references
starlike mapping
0 references
plurisubharmonic defining function
0 references
Minkowski function
0 references
A starlikeness criterion for holomorphic mappings on balanced pseudoconvex domains (English)
0 references
The author gives the following starlikeness criterion: Let \(\Omega\subset\mathbb C^n\) be a bounded balanced domain with \(C^1\) plurisubharmonic defining functions, \(h\) be the Minkowski function of \(\Omega\), and \(f\) be a locally biholomorphic mapping on \(\Omega\) satisfying \(f(0) = 0\) and NEWLINE\[NEWLINE\left|\left\langle(Df(z))^{-1}D^2f(z)(z,w(z)), \frac{\partial h^2}{\partial\overline z}(z)\right\rangle\right|\leq M(z)\left|\left\langle w(z), \frac{\partial h^2}{\partial\overline z}(z) \right\rangle\right|NEWLINE\]NEWLINE for \(z\in\Omega \setminus\{0\}\), where \(w(z) = (Df(z))^{-1}(f(z))\) and \(M(z) < 1\). Then \(f\) is starlike.
0 references