Focal boundary value problems, via Sperner's lemma (Q2782949)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Focal boundary value problems, via Sperner's lemma |
scientific article; zbMATH DE number 1725756
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Focal boundary value problems, via Sperner's lemma |
scientific article; zbMATH DE number 1725756 |
Statements
8 April 2002
0 references
multipoint
0 references
focal
0 references
nonlinear boundary value problem
0 references
Sperner's lemma
0 references
conjugate
0 references
Focal boundary value problems, via Sperner's lemma (English)
0 references
The author considers the \(n\)th-order differential equation NEWLINE\[NEWLINEx^{(n)}(t)=f(t,x(t)), \quad t\in [0,1],NEWLINE\]NEWLINE satisfying the multipoint conditions \(x^{(j)}(0)=0\), \(j\in [0,n_1-1]\), \(x^{(l_i)}+j(a_i)=0\) for \( j\in [0,n_i-1]\), \(i=2,3,\dots ,k.\) The nonlinearity \(f\) is assumed to satisfy \(f(t,x)>0\) for nonnegative \(x\) and \(t\in [0,1]\). Moreover, the solution \( x(t)\) satisfies \(x^{(i)}(t)>0\) for \(0<t\leq 1.\) The principal tool is a result from combinatorial topology, Sperner's lemma.
0 references