Classification of span-symmetric generalized quadrangles of order \(s\) (Q2783474)

From MaRDI portal





scientific article; zbMATH DE number 1730450
Language Label Description Also known as
English
Classification of span-symmetric generalized quadrangles of order \(s\)
scientific article; zbMATH DE number 1730450

    Statements

    0 references
    18 April 2002
    0 references
    span-symmetric generalized quadrangle
    0 references
    0 references
    0 references
    0 references
    0 references
    Classification of span-symmetric generalized quadrangles of order \(s\) (English)
    0 references
    Let \(\mathcal S\) be a finite generalized quadrangle of order \((s,t)\), \(s,t > 1\). \(\mathcal S\) is called span-symmetric if there are two disjoint axes of symmetry. The generalized quadrangle \(\mathcal L(4,s)\) arises from non-singular parabolic quadric in \(PG(4,s)\).NEWLINENEWLINENEWLINEThe author gives and proves the following main results:NEWLINENEWLINENEWLINE1. Let \(\mathcal S\) be a span-symmetric generalized quadrangle of order \((s,s)\), \(s\neq 1\). Then \(\mathcal S\) is isomorphic to \({\mathcal L}(4,s)\).NEWLINENEWLINENEWLINE2. A finite group is isomorphic to \(SL_2(s)\) for some \(s\) if and only if it has a 4-gonal basis.
    0 references
    0 references

    Identifiers