Iterative solutions to nonlinear equations of the accretive type in Banach spaces (Q2785274)

From MaRDI portal





scientific article; zbMATH DE number 1733465
Language Label Description Also known as
English
Iterative solutions to nonlinear equations of the accretive type in Banach spaces
scientific article; zbMATH DE number 1733465

    Statements

    0 references
    0 references
    0 references
    5 August 2003
    0 references
    Ishikawa approximations
    0 references
    strongly accretive operator
    0 references
    real Banach space
    0 references
    strong convergence
    0 references
    Iterative solutions to nonlinear equations of the accretive type in Banach spaces (English)
    0 references
    This article deals with Ishikawa approximations NEWLINE\[NEWLINEx_{n+1}= (1-\alpha_n) x_n+\alpha_n Sy_n+u_n,\quad y_n=(1-\beta_n) x_n+\beta_n Sx_n+v_n\;(n=0,1,2, \dots)NEWLINE\]NEWLINE for a Lipschitz and strongly accretive operator \(T:X\to X(\|Tx-Ty \|\leq l\|x-y\|\) and \(\langle Tx-Ty,\;j(x-y) \rangle\geq k \|x-y \|^2)\) in an arbitrary real Banach space \(X\). Here, \(Sx=f+(I-T) x\), \(\alpha_n\), \(\beta_n\) are real sequences and \(u_n\), \(v_n\) are two sequences in \(X\). The authors present some theorems about the strong convergence of \(x_n\) to the solution of \(Tx=f\). For example, this convergence holds if the following conditions are true: NEWLINE\[NEWLINE\sum^\infty_{n=0} \alpha_n=\infty,\;0\leq \alpha_n, \beta_n\leq 1,{k-L(L+1) \beta_n-L(L+1) (1+\beta_nl) \alpha_n\over 1-(1-k)\alpha_n}\geq t\;(L=1+l),NEWLINE\]NEWLINE where \(t\in(0,1)\), \(\lim_{n\to\infty}\|u_n |=0\), \(\sum^\infty_{n=0}|v_n\|<\infty\). The case of the equation \(x+Tx=f\) is also considered.NEWLINENEWLINENEWLINEThe results of the article improve some theorems of L. S. Liu, C. E. Chidume, C. E. Chidume and M. O. Osilike, K. K. Tan and H. K. Xu, L. Deng, L. Deng and X. P. Ding, and others.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references