\(L_ \infty\)-estimate for qualitatively bounded weak solutions of nonlinear degenerate diagonal parabolic systems (Q2785592)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L_ \infty\)-estimate for qualitatively bounded weak solutions of nonlinear degenerate diagonal parabolic systems |
scientific article; zbMATH DE number 981718
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L_ \infty\)-estimate for qualitatively bounded weak solutions of nonlinear degenerate diagonal parabolic systems |
scientific article; zbMATH DE number 981718 |
Statements
4 August 1997
0 references
nonlinear degenerate diagonal parabolic system
0 references
0.9561907
0 references
0.94031274
0 references
0.9389586
0 references
0.92640036
0 references
\(L_ \infty\)-estimate for qualitatively bounded weak solutions of nonlinear degenerate diagonal parabolic systems (English)
0 references
We show only boundedness of qualitatively bounded weak solutions to the following Dirichlet problem for a diagonal parabolic system NEWLINE\[NEWLINEu_{it}-\text{div}(a_i(x,t,u,\nabla u)\cdot\nabla u_i)=b_i(x,t,u,\nabla u)\text{ in }\Omega^T,\quad u_i|_{t=0}=u_{0i}\text{ in }\Omega,\quad u_i=u_{bi}\text{ on }S^T,NEWLINE\]NEWLINE where \(i=1,\dots,m\), \(\Omega\subset\mathbb{R}^n\), \(\Omega^T=\Omega\times(0,T)\), \(S^T=S\times(0,T)\), \(S\) is the boundary of \(\Omega\), and dot denotes the scalar product in \(\mathbb{R}^n\). We assume the following growth conditions NEWLINE\[NEWLINEa_i(x,t,u,\nabla u)\cdot\nabla u_i\cdot \nabla u_i \geq\alpha_0|\nabla u|^{p-2}|\nabla u_i|^2-\varphi_{1i}(x,t),NEWLINE\]NEWLINE NEWLINE\[NEWLINEb_i(x,t,u,\nabla u)\leq\beta_0|\nabla u|^{p-2}|\nabla u_i|^2+\varphi_{2i}(x,t),NEWLINE\]NEWLINE where \(i=1,\dots,m\), \(\alpha_0\), \(\beta_0\) are positive constants, and \(\varphi_{1i}\), \(\varphi_{2i}\) are positive functions.
0 references