Epi/hypo-convergence: The slice topology and saddle points approximation (Q2785593)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Epi/hypo-convergence: The slice topology and saddle points approximation |
scientific article; zbMATH DE number 981719
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Epi/hypo-convergence: The slice topology and saddle points approximation |
scientific article; zbMATH DE number 981719 |
Statements
24 November 1997
0 references
Lagrangians
0 references
convex programming
0 references
internal approximation
0 references
optimal control
0 references
Chebychev approximation
0 references
slice topology
0 references
epi convergence
0 references
hypo convergence
0 references
Epi/hypo-convergence: The slice topology and saddle points approximation (English)
0 references
Consider \(F:X\times Y\rightarrow\overline{{\mathbb{R}}}\) a convex function and \(K:X\times Y^*\rightarrow\overline{{\mathbb{R}}}\) its Lagrangian, i.e., \(K(x,\cdot)=(F(x,\cdot))^*\). Taking \((F_n)\) a sequence of convex, proper and l.s.c. functions and \((K_n)\) the corresponding sequence of Lagrangians, the author obtains results concerning the convergence of \((K_n)\). For example, if \((F_n)\) slice converges to \(F\) then \((K_n)\) epi/hypo converges to \(K\) in the sense: \(\underline{\text{cl}}_s(e_s/h_{w^*}-\text{ls}\overline{K_n})\leq\underline K\), \(\underline{\text{cl}}_s(h_s/e_{w^*}-\text{li}\underline{K_n})\geq\overline K\). He also obtains the convergence of saddle points. The results are then applied to convex programming, internal approximation, optimal control and Chebyshev approximation.
0 references