Epi/hypo-convergence: The slice topology and saddle points approximation (Q2785593)

From MaRDI portal





scientific article; zbMATH DE number 981719
Language Label Description Also known as
English
Epi/hypo-convergence: The slice topology and saddle points approximation
scientific article; zbMATH DE number 981719

    Statements

    0 references
    24 November 1997
    0 references
    Lagrangians
    0 references
    convex programming
    0 references
    internal approximation
    0 references
    optimal control
    0 references
    Chebychev approximation
    0 references
    slice topology
    0 references
    epi convergence
    0 references
    hypo convergence
    0 references
    Epi/hypo-convergence: The slice topology and saddle points approximation (English)
    0 references
    Consider \(F:X\times Y\rightarrow\overline{{\mathbb{R}}}\) a convex function and \(K:X\times Y^*\rightarrow\overline{{\mathbb{R}}}\) its Lagrangian, i.e., \(K(x,\cdot)=(F(x,\cdot))^*\). Taking \((F_n)\) a sequence of convex, proper and l.s.c. functions and \((K_n)\) the corresponding sequence of Lagrangians, the author obtains results concerning the convergence of \((K_n)\). For example, if \((F_n)\) slice converges to \(F\) then \((K_n)\) epi/hypo converges to \(K\) in the sense: \(\underline{\text{cl}}_s(e_s/h_{w^*}-\text{ls}\overline{K_n})\leq\underline K\), \(\underline{\text{cl}}_s(h_s/e_{w^*}-\text{li}\underline{K_n})\geq\overline K\). He also obtains the convergence of saddle points. The results are then applied to convex programming, internal approximation, optimal control and Chebyshev approximation.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references