The dimension of tensor products of AF-rings (Q2785923)

From MaRDI portal





scientific article; zbMATH DE number 983064
Language Label Description Also known as
English
The dimension of tensor products of AF-rings
scientific article; zbMATH DE number 983064

    Statements

    0 references
    0 references
    0 references
    3 September 1997
    0 references
    tensor product
    0 references
    Jaffar domains
    0 references
    valuative dimension
    0 references
    AF-ring
    0 references
    height
    0 references
    transcendental dimension
    0 references
    The dimension of tensor products of AF-rings (English)
    0 references
    A commutative \(k\)-algebra \(A\) is an AF-ring if the height of \(P\) plus the transcendental dimension (t.d.) of \((A/P : k)\) equals t.d.\((A_P :k)\) for each prime ideal \(P\) of \(A\). -- \textit{A. R. Wadsworth} proved that if \(D_1\) and \(D_2\) are AF-domains, then NEWLINE\[NEWLINE\dim (D_1{\otimes}_k D_2)= \min\{\dim D_1+\text{t.d.}(D_1:k)\}, \text{t.d.}(D_1 :k)+\dim D_2\}.NEWLINE\]NEWLINE The authors, in this paper, extend many results in AF-domains to the class of AF-rings. They point out that the results do not extend trivially from domains to rings with zero divisors.NEWLINENEWLINEFor the entire collection see [Zbl 0855.00015].
    0 references
    0 references

    Identifiers