Global higher integrability for the parabolic equations in Reifenberg domains (Q2786311)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global higher integrability for the parabolic equations in Reifenberg domains |
scientific article; zbMATH DE number 5789796
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global higher integrability for the parabolic equations in Reifenberg domains |
scientific article; zbMATH DE number 5789796 |
Statements
Global higher integrability for the parabolic equations in Reifenberg domains (English)
0 references
21 September 2010
0 references
Orlicz spaces
0 references
small BMO coefficients
0 references
global gradient estimates
0 references
0 references
0.9230121
0 references
0.9158363
0 references
0.9062608
0 references
0.90317833
0 references
0.8988036
0 references
0.8972931
0 references
0.8968517
0 references
0.89243186
0 references
0.89208066
0 references
The paper concerns global gradient estimates in Orlicz spaces for weak solutions of the following parabolic equation NEWLINENEWLINE\[NEWLINE u_t-\text{div}(A\nabla u)= \operatorname{div} {\mathbf f}\quad \text{in }\Omega_T=\Omega\times (0,T], \qquad u=0\quad \text{on }\partial_p\Omega_T. NEWLINE\]NEWLINE NEWLINEHere, \(A\) is a symmetric matrix satisfying a uniform parabolicity condition with measurable coefficients having small BMO norm, and \(\Omega\) is a Reifenberg flat domain.
0 references