On Bourgain's bound for short exponential sums and squarefree numbers (Q2787076)

From MaRDI portal





scientific article; zbMATH DE number 6545342
Language Label Description Also known as
English
On Bourgain's bound for short exponential sums and squarefree numbers
scientific article; zbMATH DE number 6545342

    Statements

    On Bourgain's bound for short exponential sums and squarefree numbers (English)
    0 references
    0 references
    24 February 2016
    0 references
    squarefree integers
    0 references
    arithmetic progressions
    0 references
    exponential sums
    0 references
    In the paper [Int. Math. Res. Not. 2015, No. 10, 2841--2855 (2015; Zbl 1372.11039)] \textit{J. Bourgain} proved a non-trivial bound for exponential sum NEWLINE\[NEWLINE\sum_{n\leq N\atop (n,q)=1}e\left(\frac{a \overline{n}^2}{ q}\right),NEWLINE\]NEWLINE where \(q>1\) is an integer and \(\overline{n}\) denotes the multiplicative inverse of \(n\pmod q\). The author applies this result in order to prove certain independence results related to the distribution of squarefree numbers in arithmetic progressions.NEWLINENEWLINELet \(X\geq 1\). Let \(a\) and \(q\) be coprime integers such that \(q\geq 2 \) and let NEWLINE\[NEWLINEE(X,q,a):=\sum_{{n\leq X\atop n\equiv a\pmod{q}}}\mu(n)^2-\frac{6}{ \pi^2}\prod_{p\mid q}\left(1-\frac{1}{ q^2}\right)^{-1}\frac{X}{q }.NEWLINE\]NEWLINE The author studies how \(E(X,q,a)\) correlates with \(E(X,q,\gamma_{r,s}(a))\) where \(\gamma_{r,s}(a)=ra+s\), \(r,s\in\mathbb{Z}\), \(r\neq 0\). For the correlation NEWLINE\[NEWLINEC[\gamma_{r,s}](X,q):=\sum_{{a\pmod q\atop a\neq 0,\gamma_{r,s}^{-1}(0)}}E(X,q,a)E(X,q,\gamma_{r,s}(a))NEWLINE\]NEWLINE he proves the following result.NEWLINENEWLINETheorem. There exist an absolute \(\delta>0\) such that for every \(\varepsilon>0\) and every integer \(r\neq 0,\) there exist \(C_{\varepsilon,r}\) such that NEWLINE\[NEWLINE|C[\gamma_{r,s}](X,q)|\leq C_{\varepsilon,r}\left(q^{1+\varepsilon}+X^{1/2}q^{1/2}\log^{-\delta}q+\frac{X^{5/3+\varepsilon}}{ q}+\left(\frac{X}{ q}\right)^2\right)NEWLINE\]NEWLINE uniformly for \(X\geq 2\), integers \(s\) and prime numbers \(q\leq X\) such that \(q\nmid rs\).
    0 references

    Identifiers