An improved maximal inequality for 2D fractional order Schrödinger operators (Q2787145)

From MaRDI portal





scientific article; zbMATH DE number 6545402
Language Label Description Also known as
English
An improved maximal inequality for 2D fractional order Schrödinger operators
scientific article; zbMATH DE number 6545402

    Statements

    An improved maximal inequality for 2D fractional order Schrödinger operators (English)
    0 references
    0 references
    0 references
    0 references
    24 February 2016
    0 references
    local maximal inequality
    0 references
    fractional order Schrödinger operators
    0 references
    multilinear restriction estimate
    0 references
    Fourier transform
    0 references
    induction on scales
    0 references
    localization argument
    0 references
    oscillatory integral operator
    0 references
    Let \(\alpha\in(1,\infty)\). For any \(t\in(0,\infty)\), the \(\alpha\)-th Schrödinger evolution operator \(U(t)\) is defined, for suitable functions \(f\) and \(x\in\mathbb{R}^n\), by NEWLINE\[NEWLINEU(t)f(x):=(2\pi)^{-n/2}\int_{\mathbb{R}^n}e^{i[x\cdot\xi+t|\xi|^\alpha]}\widehat{f}(\xi)\,d\xi, NEWLINE\]NEWLINE where \(\widehat{f}\) denotes the Fourier transform of \(f\).NEWLINENEWLINEIn this paper, the authors proved that the local maximal inequality NEWLINE\[NEWLINE\left\|\sup_{t\in(0,1)}|U(t)f|\right\|_{L^2(B(0,1))}\leq C_{\alpha\,s}\|f\|_{H^s(\mathbb{R}^2)} NEWLINE\]NEWLINE is valid for all \(s\in(3/8,\infty)\), where \(B(0,1)\) denotes the unit ball in \(\mathbb{R}^2\) centered at the origin and \(H^s(\mathbb{R}^2)\) is the usual inhomogeneous Sobolev space defined via the Fourier transform.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references