An improved maximal inequality for 2D fractional order Schrödinger operators (Q2787145)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An improved maximal inequality for 2D fractional order Schrödinger operators |
scientific article; zbMATH DE number 6545402
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An improved maximal inequality for 2D fractional order Schrödinger operators |
scientific article; zbMATH DE number 6545402 |
Statements
An improved maximal inequality for 2D fractional order Schrödinger operators (English)
0 references
24 February 2016
0 references
local maximal inequality
0 references
fractional order Schrödinger operators
0 references
multilinear restriction estimate
0 references
Fourier transform
0 references
induction on scales
0 references
localization argument
0 references
oscillatory integral operator
0 references
Let \(\alpha\in(1,\infty)\). For any \(t\in(0,\infty)\), the \(\alpha\)-th Schrödinger evolution operator \(U(t)\) is defined, for suitable functions \(f\) and \(x\in\mathbb{R}^n\), by NEWLINE\[NEWLINEU(t)f(x):=(2\pi)^{-n/2}\int_{\mathbb{R}^n}e^{i[x\cdot\xi+t|\xi|^\alpha]}\widehat{f}(\xi)\,d\xi, NEWLINE\]NEWLINE where \(\widehat{f}\) denotes the Fourier transform of \(f\).NEWLINENEWLINEIn this paper, the authors proved that the local maximal inequality NEWLINE\[NEWLINE\left\|\sup_{t\in(0,1)}|U(t)f|\right\|_{L^2(B(0,1))}\leq C_{\alpha\,s}\|f\|_{H^s(\mathbb{R}^2)} NEWLINE\]NEWLINE is valid for all \(s\in(3/8,\infty)\), where \(B(0,1)\) denotes the unit ball in \(\mathbb{R}^2\) centered at the origin and \(H^s(\mathbb{R}^2)\) is the usual inhomogeneous Sobolev space defined via the Fourier transform.
0 references