On ideals preserving generalized local cohomology modules (Q2788764)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On ideals preserving generalized local cohomology modules |
scientific article; zbMATH DE number 6543480
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On ideals preserving generalized local cohomology modules |
scientific article; zbMATH DE number 6543480 |
Statements
On ideals preserving generalized local cohomology modules (English)
0 references
22 February 2016
0 references
generalized local cohomology
0 references
0 references
0.93043745
0 references
0.9253328
0 references
0.92423534
0 references
0.91877806
0 references
0.91814685
0 references
0.91720545
0 references
0.91579175
0 references
0.91579175
0 references
Let \(R\) be a Noetherian commutative ring with nonzero identity. Let \(\mathfrak a\) be an ideal of \(R\) and \(M, N\) two finitely generated \(R\)-modules. As a generalization of the notion of local cohomology, \textit{J. Herzog} [Komplexe, Auflösungen und Dualität in der lokalen Algebra. Habilitationsschrift, Univ. Regensburg, Regensburg (1970)]. has introduced the notion of generalized local cohomology. For any nonegative integer \(i,\) the \(i\)th generalized local cohomology module of \(M\) and \(N\) with respect to \(\mathfrak a\) is defined by NEWLINE\[CARRIAGE_RETURNNEWLINEH_{\mathfrak a}^i(M,N):={\varinjlim}_n \mathrm{Ext}^i_R(M/{\mathfrak a}^nM,N).CARRIAGE_RETURNNEWLINE\]NEWLINENEWLINENEWLINELet \(t\in \mathbb{N}\cup \{+\infty\}\). The author shows that the set NEWLINE\[CARRIAGE_RETURNNEWLINE\Omega_t:=\{{\mathfrak c}\mid {\mathfrak c} \text{ is an ideal of } R \text{ and } H_{\mathfrak c}^i(M,N)\cong H_{\mathfrak a}^i(M,N) \;\text{for \;all} \;i<t\}CARRIAGE_RETURNNEWLINE\]NEWLINEhas a largest member \({\mathfrak b}_t\). The author also proves that the ideal \({\mathfrak b}_t\) has the following two nice properties: NEWLINE\begin{itemize} NEWLINE\item[i)] \(\dim R/\mathfrak b_t=\sup \{\dim (\mathrm{Supp}_R(H_{\mathfrak a}^i(M,N)))| i<t\}\). NEWLINE\item [ii)] \(\;H_{\mathfrak c}^i(M,N)\cong H_{\mathfrak a}^i(M,N)\) for every ideal \(\mathfrak c\) such that \({\mathfrak a}\subseteq \mathfrak c\subseteq {\mathfrak b}_t\) and every \(i<t\).NEWLINE\end{itemize}
0 references