On ideals preserving generalized local cohomology modules (Q2788764)

From MaRDI portal





scientific article; zbMATH DE number 6543480
Language Label Description Also known as
English
On ideals preserving generalized local cohomology modules
scientific article; zbMATH DE number 6543480

    Statements

    On ideals preserving generalized local cohomology modules (English)
    0 references
    0 references
    22 February 2016
    0 references
    generalized local cohomology
    0 references
    Let \(R\) be a Noetherian commutative ring with nonzero identity. Let \(\mathfrak a\) be an ideal of \(R\) and \(M, N\) two finitely generated \(R\)-modules. As a generalization of the notion of local cohomology, \textit{J. Herzog} [Komplexe, Auflösungen und Dualität in der lokalen Algebra. Habilitationsschrift, Univ. Regensburg, Regensburg (1970)]. has introduced the notion of generalized local cohomology. For any nonegative integer \(i,\) the \(i\)th generalized local cohomology module of \(M\) and \(N\) with respect to \(\mathfrak a\) is defined by NEWLINE\[CARRIAGE_RETURNNEWLINEH_{\mathfrak a}^i(M,N):={\varinjlim}_n \mathrm{Ext}^i_R(M/{\mathfrak a}^nM,N).CARRIAGE_RETURNNEWLINE\]NEWLINENEWLINENEWLINELet \(t\in \mathbb{N}\cup \{+\infty\}\). The author shows that the set NEWLINE\[CARRIAGE_RETURNNEWLINE\Omega_t:=\{{\mathfrak c}\mid {\mathfrak c} \text{ is an ideal of } R \text{ and } H_{\mathfrak c}^i(M,N)\cong H_{\mathfrak a}^i(M,N) \;\text{for \;all} \;i<t\}CARRIAGE_RETURNNEWLINE\]NEWLINEhas a largest member \({\mathfrak b}_t\). The author also proves that the ideal \({\mathfrak b}_t\) has the following two nice properties: NEWLINE\begin{itemize} NEWLINE\item[i)] \(\dim R/\mathfrak b_t=\sup \{\dim (\mathrm{Supp}_R(H_{\mathfrak a}^i(M,N)))| i<t\}\). NEWLINE\item [ii)] \(\;H_{\mathfrak c}^i(M,N)\cong H_{\mathfrak a}^i(M,N)\) for every ideal \(\mathfrak c\) such that \({\mathfrak a}\subseteq \mathfrak c\subseteq {\mathfrak b}_t\) and every \(i<t\).NEWLINE\end{itemize}
    0 references

    Identifiers