On the friable Turán-Kubilius inequality (Q2793765)

From MaRDI portal





scientific article; zbMATH DE number 6557358
Language Label Description Also known as
English
On the friable Turán-Kubilius inequality
scientific article; zbMATH DE number 6557358

    Statements

    0 references
    0 references
    17 March 2016
    0 references
    Turan-Kubilius inequality
    0 references
    friable number
    0 references
    additive function
    0 references
    strongly additive function
    0 references
    duality
    0 references
    large sieve inequality
    0 references
    On the friable Turán-Kubilius inequality (English)
    0 references
    The authors of this paper present two new forms of the Turan-Kubilius inequality for friable numbers together with several applications of this inequality. Special attention is intended to the large sieve inequality which can be obtained using the principle of duality. The first main assertion of the paper states that NEWLINE\[NEWLINE\begin{aligned} \frac{1}{\#S(x,y)}\sum\limits_{n\in S(x,y)}\Big|f(n)-\sum\limits_{p^\nu\in S(x,y)}\frac{g_p(\alpha)f(p^\nu)}{p^{\nu\alpha}}\Big|^2\\ \ll\sum\limits_{p^\nu\in S(x,y)}\frac{g_p(\alpha)}{p^{\nu\alpha}}{|f(p^\nu)|^2}-\sum\limits_{p\leqslant y}\Big|\sum\limits_{1\leqslant\nu\leqslant\nu_p}\frac{g_p(\alpha)f(p^\nu)}{p^{\nu\alpha}}\Big|^2 \end{aligned}NEWLINE\]NEWLINE uniformly for all \(2\leqslant y\leqslant x\) and for all additive complex arithmetic functions \(f\). Here \(S(x,y)\) is the set of \(y\)-friable integer numbers not exceeding \(x\); \(\nu_p=\nu_p(x)=\lfloor \log x/\log p\rfloor\); \(g_p(\alpha)=1-1/p^\alpha\) and \(\alpha=\alpha(x,y)\) is the solution of the equation NEWLINE\[NEWLINE \sum\limits_{p\leqslant y}\frac{\log p}{p^\alpha-1}=\log x. NEWLINE\]
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references