Geodesic finite elements of higher order (Q2794704)

From MaRDI portal





scientific article; zbMATH DE number 6554291
Language Label Description Also known as
English
Geodesic finite elements of higher order
scientific article; zbMATH DE number 6554291

    Statements

    Geodesic finite elements of higher order (English)
    0 references
    0 references
    11 March 2016
    0 references
    variational method for the Dirichlet equation
    0 references
    Lagrangian interpolation
    0 references
    geodesic finite element method
    0 references
    For the Dirichlet problem on the domain \( \Omega \subset \mathbb R^{d}\), reduced to the variational form NEWLINE\[NEWLINE\min J(v)=\int_{\Omega}|\nabla v|^{2}dx \qquad \text{in}\quad H^{1}(\Omega,S^{2}),NEWLINE\]NEWLINE NEWLINE\[NEWLINE v = v_{D} \qquad \text{on} \quad \partial \Omega, NEWLINE\]NEWLINE where \( S^{2}\) is the unit sphere in \( \mathbb R^{d+1}\), the finite element method is applied to approximate solve this problem. The space of finite element functions is constructed using the Lagrangian interpolation with polynomials of the order \(p\) on either element \(T\) of the grid, named the geodesic finite element method.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references