Isoparametric foliations on complex projective spaces (Q2796519)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Isoparametric foliations on complex projective spaces |
scientific article; zbMATH DE number 6560456
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Isoparametric foliations on complex projective spaces |
scientific article; zbMATH DE number 6560456 |
Statements
Isoparametric foliations on complex projective spaces (English)
0 references
29 March 2016
0 references
isoparametric foliation
0 references
complex projective space
0 references
symmetric space
0 references
Hopf map
0 references
0 references
Given an irreducible inner compact symmetric space \(G/K\) of rank greater than one, the authors determine the number \(F({\mathcal F}_{G/K})\) of congruence classes of isoparametric foliations on \({\mathbb C}P^n\) whose pullback via the Hopf map \(S^{2n+1}\to {\mathbb C}P^n\) gives a foliation congruent to \({\mathcal F}_{G/K|}\), the orbit foliation of the isotropy representation of \(G/K\) restricted to the unit sphere of the tangent space \(T_{eK} G/K\). They do the same for some FKM foliations of \(S^{2n+1}\), that is for foliations constructed in [\textit{D. Ferus} et al., Math. Z. 177, 479--502 (1981; Zbl 0443.53037)].
0 references