Entire \(s\)-harmonic functions are affine (Q2796728)

From MaRDI portal





scientific article; zbMATH DE number 6560783
Language Label Description Also known as
English
Entire \(s\)-harmonic functions are affine
scientific article; zbMATH DE number 6560783

    Statements

    29 March 2016
    0 references
    fractional Laplacian
    0 references
    Liouville theorem
    0 references
    uniqueness
    0 references
    Riesz kernel
    0 references
    entire \(\alpha\)-harmonic
    0 references
    Cauchy estimates
    0 references
    Entire \(s\)-harmonic functions are affine (English)
    0 references
    The author considers the equation NEWLINE\[NEWLINE (-\Delta)^s u=P \quad \text{in}\; {\mathcal D'}(\mathbb{R}^N),\leqno{(1)} NEWLINE\]NEWLINE where \(s\in (0,1),\;(-\Delta)^s \) is the fractional Laplacian, \(P\) is a polynomial and \({\mathcal D'}(\mathbb{R}^N)\) is the dual of \({C}_c^\infty(\mathbb{R}^N)\). The author proves that solutions of problem \((1)\) are affine and \(P=0\). Further, he proves the uniqueness of the Riesz potential \(|x|^{2s-N}\) in Lebesgue spaces.
    0 references

    Identifiers