Bounds for \(p\)-adic exponential sums and log-canonical thresholds (Q2800421)

From MaRDI portal





scientific article; zbMATH DE number 6569409
Language Label Description Also known as
English
Bounds for \(p\)-adic exponential sums and log-canonical thresholds
scientific article; zbMATH DE number 6569409

    Statements

    0 references
    0 references
    15 April 2016
    0 references
    \(p\)-adic exponential sums
    0 references
    log-canonical thresholds
    0 references
    Ax-Kochen principle
    0 references
    Bounds for \(p\)-adic exponential sums and log-canonical thresholds (English)
    0 references
    The authors consider, for any integer \(m>1\) and any prime number \(p\), the exponential sum NEWLINE\[NEWLINE S(F,p,m)=p^{-mn}\sum\limits_{x\in (\mathbb Z/p^m\mathbb Z)^n}\exp \left( 2\pi i\frac{F(x)}{p^m}\right), NEWLINE\]NEWLINE where \(F\) is a nonconstant polynomial of \(n\) variables. For any \(y\in \mathbb Z^n\), they consider also a ``local version'' of the above sum, NEWLINE\[NEWLINE S_y(F,p,m)=p^{-mn}\sum\limits_{x\in y+(p\mathbb Z/p^m\mathbb Z)^n}\exp \left( 2\pi i\frac{F(x)}{p^m}\right), NEWLINE\]NEWLINE where \(y+(p\mathbb Z/p^m\mathbb Z)^n=\{ x\in (\mathbb Z/p^m\mathbb Z)^n:\;x_i\equiv y_i \pmod p \text{ for each }i\}\).NEWLINENEWLINEThe authors conjecture certain estimates for the above sums and prove them for special values of \(m\). They discuss in detail the relations between their results and methods and those for earlier conjectures by \textit{J. I. Igusa} [Lectures on forms of higher degree. Notes by S. Raghavan. Heidelberg, New York: Springer-Verlag (1978; Zbl 0417.10015)] and \textit{J. Denef} and \textit{S. Sperber} [in: A tribute to Maurice Boffa. Brussels: Belgian Mathematical Society. 55-- 63 (2002; Zbl 1046.11057)].
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references