The \(\mathfrak {v}\)-radial Paley-Wiener theorem for the Helgason Fourier transform on Damek-Ricci spaces (Q2804279)

From MaRDI portal





scientific article; zbMATH DE number 6574994
Language Label Description Also known as
English
The \(\mathfrak {v}\)-radial Paley-Wiener theorem for the Helgason Fourier transform on Damek-Ricci spaces
scientific article; zbMATH DE number 6574994

    Statements

    0 references
    28 April 2016
    0 references
    harmonic spaces
    0 references
    Jacobi functions
    0 references
    Paley-Wiener theorem
    0 references
    The \(\mathfrak {v}\)-radial Paley-Wiener theorem for the Helgason Fourier transform on Damek-Ricci spaces (English)
    0 references
    Let \(S=NA\) be a Damek-Ricci space, i.e, the semidirect product of a connected and simply connected nilpotent Lie group \(N\) of Heisenberg type and the one-dimensional Lie group \(A\cong {\mathbb R}^+\) acting on \(N\) by anisotropic dilatations. The space \(S\) can be identified with the unit ball \(B\) in the Lie algebra \(\mathfrak s\) via the Caley transform: \( S=NA\cong B=\{ (v,z,t)\in {\mathfrak s}: |v|^2+ |z|^2+t^2<1\}. \) Here \({\mathfrak s}={\mathfrak n}\oplus{\mathfrak a}={\mathfrak v}\oplus{\mathfrak z}\oplus{\mathfrak a}\), where \({\mathfrak z}\) is the center of \({\mathfrak n}\) and \({\mathfrak v}\) its orthogonal complement in \({\mathfrak n}\). A function \(f(v,z,t)\) on \(B\) is called \({\mathfrak v}\)-radial if it is radial in the variable \(v\), i.e., \(f\) depends only on \(|v|\), \(z\) and \(t\). In the paper under review the author proves the Paley-Wiener theorem for the Helgason Fourier transform of smooth compactly supported \({\mathfrak v}\)-radial functions on a Damek-Ricci space.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references