Generalized interactions supported on hypersurfaces (Q2804959)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Generalized interactions supported on hypersurfaces |
scientific article; zbMATH DE number 6578027
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Generalized interactions supported on hypersurfaces |
scientific article; zbMATH DE number 6578027 |
Statements
Generalized interactions supported on hypersurfaces (English)
0 references
9 May 2016
0 references
Schrödinger operators
0 references
singular perturbation
0 references
compact perturbation
0 references
spectrum
0 references
0 references
0 references
0 references
Let \(\Sigma\subset\mathbb R^n\), \(n\geq 2\), be the boundary of a (bounded or unbounded, not necessarily connected) Lipschitz domain \(\Omega=\Omega_{\mathrm i}\) and let \(\Omega_{\mathrm e} =\mathbb R^n\setminus (\Omega_{\mathrm i}\cup\Sigma)\). The authors consider a family of singular Schrödinger operators \(H\) with local singular interactions supported by \(\Sigma\). These operators are negative Laplacian on \(\mathbb R^n\backslash\Sigma\) subject to the interface conditions NEWLINE\[NEWLINE\partial_{\nu_{\mathrm i}} f_{\mathrm i}|_\Sigma+\partial_{\nu_{\mathrm e}}f_{\mathrm e}|_\Sigma=\frac{\alpha}{2}( f_{\mathrm i}|_\Sigma+f_{\mathrm e}|_\Sigma)+\frac{\gamma}{2}(\partial_{\nu_{\mathrm i}} f_{\mathrm i}|_\Sigma-\partial_{\nu_{\mathrm e}} f_{\mathrm e}|_\Sigma), NEWLINE\]NEWLINE NEWLINE\[NEWLINE f_{\mathrm i}|_\Sigma-f_{\mathrm e}|_\Sigma =-\frac{\overline{\gamma}}{2}( f_{\mathrm i}|_\Sigma +f_{\mathrm e}|_\Sigma)+\frac{\beta}{2}(\partial_{\nu_{\mathrm i}} f_{\mathrm i}|_\Sigma - \partial_{\nu_{\mathrm e}} f_{\mathrm e} |_\Sigma)NEWLINE\]NEWLINE on \(\Sigma\), where \(f_j = f |_{\Omega_j}\), \(j =\mathrm{i, e}\), \(f=f_{\mathrm i}\oplus f_{\mathrm e}\), \(\partial_{\nu_j} f |_\Sigma\) is the derivative of \(f\) with respect to the outer unit normal on \(\partial \Omega_j\), \(\alpha,\beta : \Sigma \to\mathbb R\), and \(\gamma : \Sigma \to\mathbb C\).NEWLINENEWLINEThe earlier studied case of \(\delta\)- and \(\delta'\)-interactions being particular cases.NEWLINENEWLINEThe authors investigate spectral properties of these operators and derive operator inequalities between those referring to the same hypersurface but different couplings \((\alpha,\beta,\gamma)\) and describe their implications for spectral properties (compactness of resolvent difference, finiteness of the discrete spectrum, position of the essential spectrum, the number of discrete eigenvalues below the bottom of the essential spectrum).
0 references