Modified non-Euclidean transformation on the \(\frac{\mathrm{SO}(2N+2)}{U(N+1)}\) Grassmannian and \(\mathrm{SO}(2N+1)\) random phase approximation for unified description of Bose and Fermi type collective excitations (Q2805563)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Modified non-Euclidean transformation on the \(\frac{\mathrm{SO}(2N+2)}{U(N+1)}\) Grassmannian and \(\mathrm{SO}(2N+1)\) random phase approximation for unified description of Bose and Fermi type collective excitations |
scientific article; zbMATH DE number 6579764
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Modified non-Euclidean transformation on the \(\frac{\mathrm{SO}(2N+2)}{U(N+1)}\) Grassmannian and \(\mathrm{SO}(2N+1)\) random phase approximation for unified description of Bose and Fermi type collective excitations |
scientific article; zbMATH DE number 6579764 |
Statements
12 May 2016
0 references
Hartree-Bogoliubov formalism
0 references
\(\mathrm{SO}(2N)\) and \(\mathrm{SO}(2N+1)\) Lie algebras
0 references
TD Hartree-Bogoliubov equation
0 references
\(\mathrm{SO}(2N+1)\) random phase approximation
0 references
0 references
Modified non-Euclidean transformation on the \(\frac{\mathrm{SO}(2N+2)}{U(N+1)}\) Grassmannian and \(\mathrm{SO}(2N+1)\) random phase approximation for unified description of Bose and Fermi type collective excitations (English)
0 references