Modified non-Euclidean transformation on the \(\frac{\mathrm{SO}(2N+2)}{U(N+1)}\) Grassmannian and \(\mathrm{SO}(2N+1)\) random phase approximation for unified description of Bose and Fermi type collective excitations (Q2805563)

From MaRDI portal





scientific article; zbMATH DE number 6579764
Language Label Description Also known as
English
Modified non-Euclidean transformation on the \(\frac{\mathrm{SO}(2N+2)}{U(N+1)}\) Grassmannian and \(\mathrm{SO}(2N+1)\) random phase approximation for unified description of Bose and Fermi type collective excitations
scientific article; zbMATH DE number 6579764

    Statements

    0 references
    12 May 2016
    0 references
    Hartree-Bogoliubov formalism
    0 references
    \(\mathrm{SO}(2N)\) and \(\mathrm{SO}(2N+1)\) Lie algebras
    0 references
    TD Hartree-Bogoliubov equation
    0 references
    \(\mathrm{SO}(2N+1)\) random phase approximation
    0 references
    Modified non-Euclidean transformation on the \(\frac{\mathrm{SO}(2N+2)}{U(N+1)}\) Grassmannian and \(\mathrm{SO}(2N+1)\) random phase approximation for unified description of Bose and Fermi type collective excitations (English)
    0 references

    Identifiers