On the stability of quadratic reciprocal functional equation in non-Archimedean fields (Q2806077)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the stability of quadratic reciprocal functional equation in non-Archimedean fields |
scientific article; zbMATH DE number 6580709
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the stability of quadratic reciprocal functional equation in non-Archimedean fields |
scientific article; zbMATH DE number 6580709 |
Statements
On the stability of quadratic reciprocal functional equation in non-Archimedean fields (English)
0 references
13 May 2016
0 references
Hyers-Ulam stability
0 references
non-Archimedean fields
0 references
quadratic reciprocal mapping
0 references
0.94228536
0 references
0.9322239
0 references
0.9252446
0 references
0.92429036
0 references
The authors prove the Hyers-Ulas-Rassias stability of the functional equation NEWLINE\[NEWLINEf((a+1)x+ay)+f((a+1)x-ay)=\frac{2f(x)f(y)((a+1)^2f(y)+a^2f(x))}{((a+1)^2f(y)-a^2f(x))^2}NEWLINE\]NEWLINE in non-Archimedean fields, where \(a\mathbb{Z}\) with \(a\neq 0,-1\). This is a slight generalization of the paper \textit{A. Bodaghi} and \textit{S. O. Kim} [J. Funct. Spaces 2014, Article ID 532463, 5 p. (2014; Zbl 1287.39018)].NEWLINENEWLINE Reviewer's remark: The authors miss to pay attention to the origin of the stability in non-Archimedean setting initiated by the works of \textit{L.M. Arriola} and \textit{W. A. Beyer} [Real Anal. Exch. 31(2005--2006), No. 1, 125--132 (2006; Zbl 1099.39019)] and \textit{M. S. Moslehian} and \textit{Th. M. Rassias} [Appl. Anal. Discrete Math. 1, No. 2, 325--334 (2007; Zbl 1257.39019)].
0 references