Finite groups with many metacyclic subgroups. (Q2807114)

From MaRDI portal





scientific article; zbMATH DE number 6582876
Language Label Description Also known as
English
Finite groups with many metacyclic subgroups.
scientific article; zbMATH DE number 6582876

    Statements

    19 May 2016
    0 references
    finite groups
    0 references
    non-nilpotent groups
    0 references
    modular groups
    0 references
    metacyclic groups
    0 references
    Carter subgroups
    0 references
    \(2\)-generator subgroups
    0 references
    0 references
    Finite groups with many metacyclic subgroups. (English)
    0 references
    In this paper the authors describe in full detail the structure of finite non-nilpotent groups in which every \(2\)-generator subgroup is metacyclic. In particular, such groups are supersoluble, metabelian and of the form \(G=NC\) with \(N\) a normal abelian subgroup, \(C\) a Carter subgroup of \(G\) and \(N\cap C=1\), moreover every element of \(C\) acts on \(N\) as a power automorphism.
    0 references
    0 references

    Identifiers