Mapping properties of weighted Bergman projection operators on Reinhardt domains (Q2809202)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Mapping properties of weighted Bergman projection operators on Reinhardt domains |
scientific article; zbMATH DE number 6586351
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Mapping properties of weighted Bergman projection operators on Reinhardt domains |
scientific article; zbMATH DE number 6586351 |
Statements
Mapping properties of weighted Bergman projection operators on Reinhardt domains (English)
0 references
27 May 2016
0 references
Bergman projection
0 references
exponential weights
0 references
\(L^p\) regularity
0 references
Sobolev regularity
0 references
0 references
0 references
0.9532578
0 references
0.9298055
0 references
0.9178567
0 references
0.91691077
0 references
0.9032797
0 references
0.9009087
0 references
0.8940247
0 references
Let \(\Omega\) be a bounded domain in \(\mathbb C^n\), let \(\lambda\) be a positive continuous function on \(\Omega\), and let \(dV(z)\) denote the standard Lebesgue measure on \(\Omega\). The space of square integrable (resp.~square integrable holomorphic) functions on \(\Omega\) with respect to the measure \(\lambda(z)dV(z)\) is denoted by \(L^2(\Omega,\lambda)\) (resp.~\(L^2_a(\Omega,\lambda)\)). Recall that the weighted Bergman projection operator \(\boldsymbol{B}^{\lambda}_{\Omega}:L^2(\Omega,\lambda)\longrightarrow L^2_a(\Omega,\lambda)\) is of the form NEWLINE\[NEWLINE \boldsymbol{B}^{\lambda}_{\Omega}f(z)=\int_{\Omega}B^{\lambda}_{\Omega}(z,w)f(w)\lambda(w)dV(w), NEWLINE\]NEWLINE where \(B^{\lambda}_{\Omega}\) is the weighted Bergman kernel.NEWLINENEWLINEFor a given pair \(\Omega\) and \(\lambda\) a natural question arises: for which \(p\in(1,+\infty)\) is the operator \(\boldsymbol{B}^{\lambda}_{\Omega}\) bounded on \(L^p(\Omega,\lambda)\)? One of the well-studied settings is the case when \(\Omega\) is the unit disc in the complex plane.NEWLINENEWLINEIn the paper under review the authors study the higher-dimensional case. They present the following results.NEWLINENEWLINE1. Let \(\Omega\) be a smooth bounded complete Reinhardt domain in \(\mathbb C^n\) and let \(\rho\) be a smooth multi-radial defining function for \(\Omega\). If \(\lambda=\exp(1/\rho)\), then \(\boldsymbol{B}^{\lambda}_{\Omega}\) is bounded on \(L^p(\Omega,\lambda)\) if and only if \(p=2\).NEWLINENEWLINE2. Let \(\mathbb B^n\) denote the unit Euclidean ball in \(\mathbb C^n\) and let \(\mu(z)=\exp(1/(\|z\|^2-1))\). Then, for any \(k\in\mathbb N\), the weighted Bergman projection \(\boldsymbol{B}^{\mu}_{\mathbb B^n}\) is bounded on the weighted \(L^2\)-Sobolev space \(W^k(\mathbb B^n,\mu)\) with the norm NEWLINE\[NEWLINE \|f\|^2_{k,\mu}=\sum_{|\beta+\gamma|\leq k}\int_{\mathbb B^n}\left|\frac{\partial^{\beta+\gamma}}{\partial\bar z^{\beta}\partial z^{\gamma}}f(z)\right|^2\mu(z)dV(z). NEWLINE\]
0 references