On the extremum problems with constraints in the metric space (Q2811024)

From MaRDI portal





scientific article; zbMATH DE number 6589880
Language Label Description Also known as
English
On the extremum problems with constraints in the metric space
scientific article; zbMATH DE number 6589880

    Statements

    7 June 2016
    0 references
    extremal problem
    0 references
    optimality conditions
    0 references
    optimization with restrictions
    0 references
    exact penalty methods
    0 references
    generalized Lipschitz function
    0 references
    metric space
    0 references
    Banach space
    0 references
    0 references
    On the extremum problems with constraints in the metric space (English)
    0 references
    Let \((X,d)\) be a metric space and \(Y\) a normed space. One considers the mappings \(S:X\to Y\), \(f,\varphi:X\to \mathbb R\), \(\omega:\mathbb R_+\to\mathbb R_+\) satisfying \(\omega(0)=0\) where \(\mathbb R_+=[0,\infty)\), and the numbers \(\alpha,\beta,\delta,\nu >0\) with \(\beta\geq\alpha\nu\).NEWLINENEWLINEA mapping \(F:X\to Y\) is called \(S\)-\((\alpha,\beta,\nu,\omega)\) Lipschitz with constant \(K\) at a point \(\bar x\in G\) relative to the set \(G\) ifNEWLINENEWLINE\[NEWLINE \|F(y)-F(x)-S(y)+S(x)\|\leq Kd(x,y)^\nu\left(d(x,\bar x)^{\beta-\alpha\nu}+d(x,y)^{(\beta-\alpha\nu)/\alpha}\right)+\omega(d(x,\bar x))\,,NEWLINE\]NEWLINENEWLINEfor all \(x,y\in G\).NEWLINENEWLINEThe author studies the properties of this class of functions and applies them to the study of some optimization problems with restrictions.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references